Properties

Label 1584.3.j.i.1297.2
Level $1584$
Weight $3$
Character 1584.1297
Analytic conductor $43.161$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1584,3,Mod(1297,1584)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1584.1297"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1584, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 1])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 1584 = 2^{4} \cdot 3^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1584.j (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,84] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(25)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(43.1608738747\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{46})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 46x^{2} + 2116 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 99)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1297.2
Root \(-3.39116 - 5.87367i\) of defining polynomial
Character \(\chi\) \(=\) 1584.1297
Dual form 1584.3.j.i.1297.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-6.78233 q^{5} +11.7473i q^{7} +(-6.78233 + 8.66025i) q^{11} +11.7473i q^{13} +10.3923i q^{17} -33.9116 q^{23} +21.0000 q^{25} +34.6410i q^{29} +10.0000 q^{31} -79.6743i q^{35} +50.0000 q^{37} -34.6410i q^{41} +46.9894i q^{43} -33.9116 q^{47} -89.0000 q^{49} +33.9116 q^{53} +(46.0000 - 58.7367i) q^{55} +67.8233 q^{59} +58.7367i q^{61} -79.6743i q^{65} +10.0000 q^{67} -33.9116 q^{71} -70.4840i q^{73} +(-101.735 - 79.6743i) q^{77} -58.7367i q^{79} -76.2102i q^{83} -70.4840i q^{85} +13.5647 q^{89} -138.000 q^{91} -40.0000 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 84 q^{25} + 40 q^{31} + 200 q^{37} - 356 q^{49} + 184 q^{55} + 40 q^{67} - 552 q^{91} - 160 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1584\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(353\) \(991\) \(1189\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −6.78233 −1.35647 −0.678233 0.734847i \(-0.737254\pi\)
−0.678233 + 0.734847i \(0.737254\pi\)
\(6\) 0 0
\(7\) 11.7473i 1.67819i 0.543984 + 0.839096i \(0.316915\pi\)
−0.543984 + 0.839096i \(0.683085\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −6.78233 + 8.66025i −0.616575 + 0.787296i
\(12\) 0 0
\(13\) 11.7473i 0.903642i 0.892109 + 0.451821i \(0.149225\pi\)
−0.892109 + 0.451821i \(0.850775\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 10.3923i 0.611312i 0.952142 + 0.305656i \(0.0988758\pi\)
−0.952142 + 0.305656i \(0.901124\pi\)
\(18\) 0 0
\(19\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −33.9116 −1.47442 −0.737210 0.675664i \(-0.763857\pi\)
−0.737210 + 0.675664i \(0.763857\pi\)
\(24\) 0 0
\(25\) 21.0000 0.840000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 34.6410i 1.19452i 0.802049 + 0.597259i \(0.203744\pi\)
−0.802049 + 0.597259i \(0.796256\pi\)
\(30\) 0 0
\(31\) 10.0000 0.322581 0.161290 0.986907i \(-0.448434\pi\)
0.161290 + 0.986907i \(0.448434\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 79.6743i 2.27641i
\(36\) 0 0
\(37\) 50.0000 1.35135 0.675676 0.737199i \(-0.263852\pi\)
0.675676 + 0.737199i \(0.263852\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 34.6410i 0.844903i −0.906386 0.422451i \(-0.861170\pi\)
0.906386 0.422451i \(-0.138830\pi\)
\(42\) 0 0
\(43\) 46.9894i 1.09278i 0.837532 + 0.546388i \(0.183998\pi\)
−0.837532 + 0.546388i \(0.816002\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −33.9116 −0.721524 −0.360762 0.932658i \(-0.617483\pi\)
−0.360762 + 0.932658i \(0.617483\pi\)
\(48\) 0 0
\(49\) −89.0000 −1.81633
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 33.9116 0.639842 0.319921 0.947444i \(-0.396344\pi\)
0.319921 + 0.947444i \(0.396344\pi\)
\(54\) 0 0
\(55\) 46.0000 58.7367i 0.836364 1.06794i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 67.8233 1.14955 0.574774 0.818312i \(-0.305090\pi\)
0.574774 + 0.818312i \(0.305090\pi\)
\(60\) 0 0
\(61\) 58.7367i 0.962897i 0.876474 + 0.481448i \(0.159889\pi\)
−0.876474 + 0.481448i \(0.840111\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 79.6743i 1.22576i
\(66\) 0 0
\(67\) 10.0000 0.149254 0.0746269 0.997212i \(-0.476223\pi\)
0.0746269 + 0.997212i \(0.476223\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −33.9116 −0.477629 −0.238814 0.971065i \(-0.576759\pi\)
−0.238814 + 0.971065i \(0.576759\pi\)
\(72\) 0 0
\(73\) 70.4840i 0.965535i −0.875749 0.482767i \(-0.839632\pi\)
0.875749 0.482767i \(-0.160368\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −101.735 79.6743i −1.32123 1.03473i
\(78\) 0 0
\(79\) 58.7367i 0.743503i −0.928332 0.371751i \(-0.878757\pi\)
0.928332 0.371751i \(-0.121243\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 76.2102i 0.918196i −0.888386 0.459098i \(-0.848173\pi\)
0.888386 0.459098i \(-0.151827\pi\)
\(84\) 0 0
\(85\) 70.4840i 0.829224i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 13.5647 0.152412 0.0762060 0.997092i \(-0.475719\pi\)
0.0762060 + 0.997092i \(0.475719\pi\)
\(90\) 0 0
\(91\) −138.000 −1.51648
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −40.0000 −0.412371 −0.206186 0.978513i \(-0.566105\pi\)
−0.206186 + 0.978513i \(0.566105\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 69.2820i 0.685961i −0.939343 0.342980i \(-0.888564\pi\)
0.939343 0.342980i \(-0.111436\pi\)
\(102\) 0 0
\(103\) −170.000 −1.65049 −0.825243 0.564778i \(-0.808962\pi\)
−0.825243 + 0.564778i \(0.808962\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 93.5307i 0.874119i −0.899433 0.437060i \(-0.856020\pi\)
0.899433 0.437060i \(-0.143980\pi\)
\(108\) 0 0
\(109\) 176.210i 1.61661i 0.588766 + 0.808303i \(0.299614\pi\)
−0.588766 + 0.808303i \(0.700386\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −67.8233 −0.600206 −0.300103 0.953907i \(-0.597021\pi\)
−0.300103 + 0.953907i \(0.597021\pi\)
\(114\) 0 0
\(115\) 230.000 2.00000
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −122.082 −1.02590
\(120\) 0 0
\(121\) −29.0000 117.473i −0.239669 0.970855i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 27.1293 0.217035
\(126\) 0 0
\(127\) 105.726i 0.832489i 0.909253 + 0.416244i \(0.136654\pi\)
−0.909253 + 0.416244i \(0.863346\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 34.6410i 0.264435i 0.991221 + 0.132218i \(0.0422098\pi\)
−0.991221 + 0.132218i \(0.957790\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −271.293 −1.98024 −0.990121 0.140214i \(-0.955221\pi\)
−0.990121 + 0.140214i \(0.955221\pi\)
\(138\) 0 0
\(139\) 117.473i 0.845132i −0.906332 0.422566i \(-0.861129\pi\)
0.906332 0.422566i \(-0.138871\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −101.735 79.6743i −0.711433 0.557163i
\(144\) 0 0
\(145\) 234.947i 1.62032i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 138.564i 0.929960i −0.885321 0.464980i \(-0.846061\pi\)
0.885321 0.464980i \(-0.153939\pi\)
\(150\) 0 0
\(151\) 58.7367i 0.388985i −0.980904 0.194492i \(-0.937694\pi\)
0.980904 0.194492i \(-0.0623060\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −67.8233 −0.437570
\(156\) 0 0
\(157\) 170.000 1.08280 0.541401 0.840764i \(-0.317894\pi\)
0.541401 + 0.840764i \(0.317894\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 398.372i 2.47436i
\(162\) 0 0
\(163\) −140.000 −0.858896 −0.429448 0.903092i \(-0.641292\pi\)
−0.429448 + 0.903092i \(0.641292\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 200.918i 1.20310i 0.798835 + 0.601551i \(0.205450\pi\)
−0.798835 + 0.601551i \(0.794550\pi\)
\(168\) 0 0
\(169\) 31.0000 0.183432
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 304.841i 1.76209i 0.473036 + 0.881043i \(0.343158\pi\)
−0.473036 + 0.881043i \(0.656842\pi\)
\(174\) 0 0
\(175\) 246.694i 1.40968i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 149.211 0.833582 0.416791 0.909002i \(-0.363155\pi\)
0.416791 + 0.909002i \(0.363155\pi\)
\(180\) 0 0
\(181\) −130.000 −0.718232 −0.359116 0.933293i \(-0.616922\pi\)
−0.359116 + 0.933293i \(0.616922\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −339.116 −1.83306
\(186\) 0 0
\(187\) −90.0000 70.4840i −0.481283 0.376920i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 88.1703 0.461625 0.230812 0.972998i \(-0.425862\pi\)
0.230812 + 0.972998i \(0.425862\pi\)
\(192\) 0 0
\(193\) 187.957i 0.973873i 0.873437 + 0.486936i \(0.161886\pi\)
−0.873437 + 0.486936i \(0.838114\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 41.5692i 0.211011i −0.994419 0.105506i \(-0.966354\pi\)
0.994419 0.105506i \(-0.0336461\pi\)
\(198\) 0 0
\(199\) 202.000 1.01508 0.507538 0.861630i \(-0.330556\pi\)
0.507538 + 0.861630i \(0.330556\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −406.940 −2.00463
\(204\) 0 0
\(205\) 234.947i 1.14608i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 117.473i 0.556746i −0.960473 0.278373i \(-0.910205\pi\)
0.960473 0.278373i \(-0.0897951\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 318.697i 1.48231i
\(216\) 0 0
\(217\) 117.473i 0.541352i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −122.082 −0.552407
\(222\) 0 0
\(223\) 250.000 1.12108 0.560538 0.828129i \(-0.310594\pi\)
0.560538 + 0.828129i \(0.310594\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 45.0333i 0.198385i −0.995068 0.0991923i \(-0.968374\pi\)
0.995068 0.0991923i \(-0.0316259\pi\)
\(228\) 0 0
\(229\) 158.000 0.689956 0.344978 0.938611i \(-0.387886\pi\)
0.344978 + 0.938611i \(0.387886\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 62.3538i 0.267613i −0.991007 0.133807i \(-0.957280\pi\)
0.991007 0.133807i \(-0.0427201\pi\)
\(234\) 0 0
\(235\) 230.000 0.978723
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 381.051i 1.59436i −0.603744 0.797178i \(-0.706325\pi\)
0.603744 0.797178i \(-0.293675\pi\)
\(240\) 0 0
\(241\) 234.947i 0.974883i 0.873156 + 0.487441i \(0.162070\pi\)
−0.873156 + 0.487441i \(0.837930\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 603.627 2.46379
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −135.647 −0.540425 −0.270212 0.962801i \(-0.587094\pi\)
−0.270212 + 0.962801i \(0.587094\pi\)
\(252\) 0 0
\(253\) 230.000 293.684i 0.909091 1.16080i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 339.116 1.31952 0.659760 0.751477i \(-0.270658\pi\)
0.659760 + 0.751477i \(0.270658\pi\)
\(258\) 0 0
\(259\) 587.367i 2.26783i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 96.9948i 0.368802i −0.982851 0.184401i \(-0.940966\pi\)
0.982851 0.184401i \(-0.0590345\pi\)
\(264\) 0 0
\(265\) −230.000 −0.867925
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 33.9116 0.126066 0.0630328 0.998011i \(-0.479923\pi\)
0.0630328 + 0.998011i \(0.479923\pi\)
\(270\) 0 0
\(271\) 176.210i 0.650222i 0.945676 + 0.325111i \(0.105402\pi\)
−0.945676 + 0.325111i \(0.894598\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −142.429 + 181.865i −0.517923 + 0.661328i
\(276\) 0 0
\(277\) 11.7473i 0.0424092i −0.999775 0.0212046i \(-0.993250\pi\)
0.999775 0.0212046i \(-0.00675013\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 190.526i 0.678027i 0.940782 + 0.339014i \(0.110093\pi\)
−0.940782 + 0.339014i \(0.889907\pi\)
\(282\) 0 0
\(283\) 399.410i 1.41134i −0.708540 0.705671i \(-0.750646\pi\)
0.708540 0.705671i \(-0.249354\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 406.940 1.41791
\(288\) 0 0
\(289\) 181.000 0.626298
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 422.620i 1.44239i 0.692732 + 0.721195i \(0.256407\pi\)
−0.692732 + 0.721195i \(0.743593\pi\)
\(294\) 0 0
\(295\) −460.000 −1.55932
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 398.372i 1.33235i
\(300\) 0 0
\(301\) −552.000 −1.83389
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 398.372i 1.30614i
\(306\) 0 0
\(307\) 70.4840i 0.229590i 0.993389 + 0.114795i \(0.0366211\pi\)
−0.993389 + 0.114795i \(0.963379\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 373.028 1.19945 0.599724 0.800207i \(-0.295277\pi\)
0.599724 + 0.800207i \(0.295277\pi\)
\(312\) 0 0
\(313\) −70.0000 −0.223642 −0.111821 0.993728i \(-0.535668\pi\)
−0.111821 + 0.993728i \(0.535668\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −169.558 −0.534884 −0.267442 0.963574i \(-0.586178\pi\)
−0.267442 + 0.963574i \(0.586178\pi\)
\(318\) 0 0
\(319\) −300.000 234.947i −0.940439 0.736510i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 246.694i 0.759059i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 398.372i 1.21086i
\(330\) 0 0
\(331\) 40.0000 0.120846 0.0604230 0.998173i \(-0.480755\pi\)
0.0604230 + 0.998173i \(0.480755\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −67.8233 −0.202458
\(336\) 0 0
\(337\) 164.463i 0.488020i −0.969773 0.244010i \(-0.921537\pi\)
0.969773 0.244010i \(-0.0784630\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −67.8233 + 86.6025i −0.198895 + 0.253966i
\(342\) 0 0
\(343\) 469.894i 1.36995i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 491.902i 1.41759i 0.705416 + 0.708793i \(0.250760\pi\)
−0.705416 + 0.708793i \(0.749240\pi\)
\(348\) 0 0
\(349\) 646.104i 1.85130i −0.378381 0.925650i \(-0.623519\pi\)
0.378381 0.925650i \(-0.376481\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 135.647 0.384268 0.192134 0.981369i \(-0.438459\pi\)
0.192134 + 0.981369i \(0.438459\pi\)
\(354\) 0 0
\(355\) 230.000 0.647887
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 103.923i 0.289479i 0.989470 + 0.144740i \(0.0462345\pi\)
−0.989470 + 0.144740i \(0.953766\pi\)
\(360\) 0 0
\(361\) 361.000 1.00000
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 478.046i 1.30972i
\(366\) 0 0
\(367\) 130.000 0.354223 0.177112 0.984191i \(-0.443325\pi\)
0.177112 + 0.984191i \(0.443325\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 398.372i 1.07378i
\(372\) 0 0
\(373\) 481.641i 1.29126i −0.763649 0.645631i \(-0.776594\pi\)
0.763649 0.645631i \(-0.223406\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −406.940 −1.07942
\(378\) 0 0
\(379\) −308.000 −0.812665 −0.406332 0.913725i \(-0.633193\pi\)
−0.406332 + 0.913725i \(0.633193\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −237.382 −0.619795 −0.309898 0.950770i \(-0.600295\pi\)
−0.309898 + 0.950770i \(0.600295\pi\)
\(384\) 0 0
\(385\) 690.000 + 540.378i 1.79221 + 1.40358i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 644.321 1.65635 0.828177 0.560467i \(-0.189378\pi\)
0.828177 + 0.560467i \(0.189378\pi\)
\(390\) 0 0
\(391\) 352.420i 0.901330i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 398.372i 1.00854i
\(396\) 0 0
\(397\) −310.000 −0.780856 −0.390428 0.920633i \(-0.627673\pi\)
−0.390428 + 0.920633i \(0.627673\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −556.151 −1.38691 −0.693455 0.720500i \(-0.743912\pi\)
−0.693455 + 0.720500i \(0.743912\pi\)
\(402\) 0 0
\(403\) 117.473i 0.291497i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −339.116 + 433.013i −0.833210 + 1.06391i
\(408\) 0 0
\(409\) 587.367i 1.43611i −0.695989 0.718053i \(-0.745034\pi\)
0.695989 0.718053i \(-0.254966\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 796.743i 1.92916i
\(414\) 0 0
\(415\) 516.883i 1.24550i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −54.2586 −0.129496 −0.0647478 0.997902i \(-0.520624\pi\)
−0.0647478 + 0.997902i \(0.520624\pi\)
\(420\) 0 0
\(421\) −310.000 −0.736342 −0.368171 0.929758i \(-0.620016\pi\)
−0.368171 + 0.929758i \(0.620016\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 218.238i 0.513502i
\(426\) 0 0
\(427\) −690.000 −1.61593
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 103.923i 0.241121i −0.992706 0.120560i \(-0.961531\pi\)
0.992706 0.120560i \(-0.0384691\pi\)
\(432\) 0 0
\(433\) −610.000 −1.40878 −0.704388 0.709815i \(-0.748778\pi\)
−0.704388 + 0.709815i \(0.748778\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 411.157i 0.936576i −0.883576 0.468288i \(-0.844871\pi\)
0.883576 0.468288i \(-0.155129\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 271.293 0.612400 0.306200 0.951967i \(-0.400942\pi\)
0.306200 + 0.951967i \(0.400942\pi\)
\(444\) 0 0
\(445\) −92.0000 −0.206742
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 217.035 0.483373 0.241687 0.970354i \(-0.422299\pi\)
0.241687 + 0.970354i \(0.422299\pi\)
\(450\) 0 0
\(451\) 300.000 + 234.947i 0.665188 + 0.520946i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 935.962 2.05706
\(456\) 0 0
\(457\) 164.463i 0.359875i 0.983678 + 0.179937i \(0.0575895\pi\)
−0.983678 + 0.179937i \(0.942410\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 658.179i 1.42772i 0.700288 + 0.713860i \(0.253055\pi\)
−0.700288 + 0.713860i \(0.746945\pi\)
\(462\) 0 0
\(463\) 670.000 1.44708 0.723542 0.690280i \(-0.242513\pi\)
0.723542 + 0.690280i \(0.242513\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −339.116 −0.726160 −0.363080 0.931758i \(-0.618275\pi\)
−0.363080 + 0.931758i \(0.618275\pi\)
\(468\) 0 0
\(469\) 117.473i 0.250476i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −406.940 318.697i −0.860338 0.673779i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 484.974i 1.01247i 0.862395 + 0.506236i \(0.168964\pi\)
−0.862395 + 0.506236i \(0.831036\pi\)
\(480\) 0 0
\(481\) 587.367i 1.22114i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 271.293 0.559367
\(486\) 0 0
\(487\) −230.000 −0.472279 −0.236140 0.971719i \(-0.575882\pi\)
−0.236140 + 0.971719i \(0.575882\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 17.3205i 0.0352760i −0.999844 0.0176380i \(-0.994385\pi\)
0.999844 0.0176380i \(-0.00561464\pi\)
\(492\) 0 0
\(493\) −360.000 −0.730223
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 398.372i 0.801553i
\(498\) 0 0
\(499\) −152.000 −0.304609 −0.152305 0.988334i \(-0.548669\pi\)
−0.152305 + 0.988334i \(0.548669\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 769.031i 1.52889i 0.644690 + 0.764444i \(0.276986\pi\)
−0.644690 + 0.764444i \(0.723014\pi\)
\(504\) 0 0
\(505\) 469.894i 0.930482i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 644.321 1.26586 0.632929 0.774210i \(-0.281853\pi\)
0.632929 + 0.774210i \(0.281853\pi\)
\(510\) 0 0
\(511\) 828.000 1.62035
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 1153.00 2.23883
\(516\) 0 0
\(517\) 230.000 293.684i 0.444874 0.568053i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −149.211 −0.286394 −0.143197 0.989694i \(-0.545738\pi\)
−0.143197 + 0.989694i \(0.545738\pi\)
\(522\) 0 0
\(523\) 281.936i 0.539075i −0.962990 0.269537i \(-0.913129\pi\)
0.962990 0.269537i \(-0.0868708\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 103.923i 0.197197i
\(528\) 0 0
\(529\) 621.000 1.17391
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 406.940 0.763489
\(534\) 0 0
\(535\) 634.356i 1.18571i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 603.627 770.763i 1.11990 1.42999i
\(540\) 0 0
\(541\) 881.051i 1.62856i 0.580473 + 0.814280i \(0.302868\pi\)
−0.580473 + 0.814280i \(0.697132\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 1195.12i 2.19287i
\(546\) 0 0
\(547\) 187.957i 0.343615i 0.985131 + 0.171808i \(0.0549607\pi\)
−0.985131 + 0.171808i \(0.945039\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 690.000 1.24774
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 478.046i 0.858251i −0.903245 0.429126i \(-0.858822\pi\)
0.903245 0.429126i \(-0.141178\pi\)
\(558\) 0 0
\(559\) −552.000 −0.987478
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 1084.26i 1.92587i 0.269737 + 0.962934i \(0.413063\pi\)
−0.269737 + 0.962934i \(0.586937\pi\)
\(564\) 0 0
\(565\) 460.000 0.814159
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 606.218i 1.06541i 0.846301 + 0.532705i \(0.178824\pi\)
−0.846301 + 0.532705i \(0.821176\pi\)
\(570\) 0 0
\(571\) 117.473i 0.205733i −0.994695 0.102866i \(-0.967199\pi\)
0.994695 0.102866i \(-0.0328014\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −712.145 −1.23851
\(576\) 0 0
\(577\) −400.000 −0.693241 −0.346620 0.938005i \(-0.612671\pi\)
−0.346620 + 0.938005i \(0.612671\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 895.268 1.54091
\(582\) 0 0
\(583\) −230.000 + 293.684i −0.394511 + 0.503745i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 881.703 1.50205 0.751025 0.660274i \(-0.229560\pi\)
0.751025 + 0.660274i \(0.229560\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 613.146i 1.03397i 0.855994 + 0.516986i \(0.172946\pi\)
−0.855994 + 0.516986i \(0.827054\pi\)
\(594\) 0 0
\(595\) 828.000 1.39160
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 1064.83 1.77767 0.888836 0.458225i \(-0.151515\pi\)
0.888836 + 0.458225i \(0.151515\pi\)
\(600\) 0 0
\(601\) 117.473i 0.195463i −0.995213 0.0977316i \(-0.968841\pi\)
0.995213 0.0977316i \(-0.0311587\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 196.688 + 796.743i 0.325103 + 1.31693i
\(606\) 0 0
\(607\) 693.093i 1.14183i 0.821008 + 0.570917i \(0.193412\pi\)
−0.821008 + 0.570917i \(0.806588\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 398.372i 0.651999i
\(612\) 0 0
\(613\) 105.726i 0.172473i −0.996275 0.0862366i \(-0.972516\pi\)
0.996275 0.0862366i \(-0.0274841\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −67.8233 −0.109924 −0.0549622 0.998488i \(-0.517504\pi\)
−0.0549622 + 0.998488i \(0.517504\pi\)
\(618\) 0 0
\(619\) 490.000 0.791599 0.395800 0.918337i \(-0.370467\pi\)
0.395800 + 0.918337i \(0.370467\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 159.349i 0.255776i
\(624\) 0 0
\(625\) −709.000 −1.13440
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 519.615i 0.826097i
\(630\) 0 0
\(631\) −338.000 −0.535658 −0.267829 0.963467i \(-0.586306\pi\)
−0.267829 + 0.963467i \(0.586306\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 717.069i 1.12924i
\(636\) 0 0
\(637\) 1045.51i 1.64131i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 257.729 0.402073 0.201036 0.979584i \(-0.435569\pi\)
0.201036 + 0.979584i \(0.435569\pi\)
\(642\) 0 0
\(643\) 130.000 0.202177 0.101089 0.994877i \(-0.467767\pi\)
0.101089 + 0.994877i \(0.467767\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −1051.26 −1.62482 −0.812412 0.583084i \(-0.801846\pi\)
−0.812412 + 0.583084i \(0.801846\pi\)
\(648\) 0 0
\(649\) −460.000 + 587.367i −0.708783 + 0.905034i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 237.382 0.363525 0.181762 0.983342i \(-0.441820\pi\)
0.181762 + 0.983342i \(0.441820\pi\)
\(654\) 0 0
\(655\) 234.947i 0.358697i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 398.372i 0.604509i −0.953227 0.302255i \(-0.902261\pi\)
0.953227 0.302255i \(-0.0977393\pi\)
\(660\) 0 0
\(661\) 278.000 0.420575 0.210287 0.977640i \(-0.432560\pi\)
0.210287 + 0.977640i \(0.432560\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 1174.73i 1.76122i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −508.675 398.372i −0.758085 0.593698i
\(672\) 0 0
\(673\) 540.378i 0.802939i −0.915872 0.401469i \(-0.868500\pi\)
0.915872 0.401469i \(-0.131500\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 491.902i 0.726591i 0.931674 + 0.363296i \(0.118349\pi\)
−0.931674 + 0.363296i \(0.881651\pi\)
\(678\) 0 0
\(679\) 469.894i 0.692038i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −949.526 −1.39023 −0.695114 0.718899i \(-0.744646\pi\)
−0.695114 + 0.718899i \(0.744646\pi\)
\(684\) 0 0
\(685\) 1840.00 2.68613
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 398.372i 0.578188i
\(690\) 0 0
\(691\) −482.000 −0.697540 −0.348770 0.937208i \(-0.613401\pi\)
−0.348770 + 0.937208i \(0.613401\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 796.743i 1.14639i
\(696\) 0 0
\(697\) 360.000 0.516499
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 207.846i 0.296499i 0.988950 + 0.148250i \(0.0473639\pi\)
−0.988950 + 0.148250i \(0.952636\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 813.880 1.15117
\(708\) 0 0
\(709\) −1210.00 −1.70663 −0.853315 0.521397i \(-0.825411\pi\)
−0.853315 + 0.521397i \(0.825411\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −339.116 −0.475619
\(714\) 0 0
\(715\) 690.000 + 540.378i 0.965035 + 0.755773i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −1132.65 −1.57531 −0.787656 0.616115i \(-0.788705\pi\)
−0.787656 + 0.616115i \(0.788705\pi\)
\(720\) 0 0
\(721\) 1997.05i 2.76983i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 727.461i 1.00339i
\(726\) 0 0
\(727\) −1130.00 −1.55433 −0.777166 0.629295i \(-0.783344\pi\)
−0.777166 + 0.629295i \(0.783344\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −488.328 −0.668027
\(732\) 0 0
\(733\) 928.040i 1.26608i 0.774117 + 0.633042i \(0.218194\pi\)
−0.774117 + 0.633042i \(0.781806\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −67.8233 + 86.6025i −0.0920262 + 0.117507i
\(738\) 0 0
\(739\) 1057.26i 1.43066i 0.698785 + 0.715332i \(0.253724\pi\)
−0.698785 + 0.715332i \(0.746276\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 131.636i 0.177168i −0.996069 0.0885840i \(-0.971766\pi\)
0.996069 0.0885840i \(-0.0282342\pi\)
\(744\) 0 0
\(745\) 939.787i 1.26146i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 1098.74 1.46694
\(750\) 0 0
\(751\) 298.000 0.396804 0.198402 0.980121i \(-0.436425\pi\)
0.198402 + 0.980121i \(0.436425\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 398.372i 0.527645i
\(756\) 0 0
\(757\) −490.000 −0.647292 −0.323646 0.946178i \(-0.604909\pi\)
−0.323646 + 0.946178i \(0.604909\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 502.295i 0.660046i −0.943973 0.330023i \(-0.892944\pi\)
0.943973 0.330023i \(-0.107056\pi\)
\(762\) 0 0
\(763\) −2070.00 −2.71298
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 796.743i 1.03878i
\(768\) 0 0
\(769\) 234.947i 0.305522i −0.988263 0.152761i \(-0.951183\pi\)
0.988263 0.152761i \(-0.0488166\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −1390.38 −1.79868 −0.899339 0.437253i \(-0.855952\pi\)
−0.899339 + 0.437253i \(0.855952\pi\)
\(774\) 0 0
\(775\) 210.000 0.270968
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 230.000 293.684i 0.294494 0.376035i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −1153.00 −1.46878
\(786\) 0 0
\(787\) 187.957i 0.238828i −0.992845 0.119414i \(-0.961898\pi\)
0.992845 0.119414i \(-0.0381015\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 796.743i 1.00726i
\(792\) 0 0
\(793\) −690.000 −0.870113
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 237.382 0.297844 0.148922 0.988849i \(-0.452420\pi\)
0.148922 + 0.988849i \(0.452420\pi\)
\(798\) 0 0
\(799\) 352.420i 0.441077i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 610.410 + 478.046i 0.760162 + 0.595325i
\(804\) 0 0
\(805\) 2701.89i 3.35638i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 1143.15i 1.41305i −0.707691 0.706523i \(-0.750263\pi\)
0.707691 0.706523i \(-0.249737\pi\)
\(810\) 0 0
\(811\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 949.526 1.16506
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 969.948i 1.18142i 0.806883 + 0.590712i \(0.201153\pi\)
−0.806883 + 0.590712i \(0.798847\pi\)
\(822\) 0 0
\(823\) 310.000 0.376671 0.188335 0.982105i \(-0.439691\pi\)
0.188335 + 0.982105i \(0.439691\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 893.738i 1.08070i −0.841441 0.540350i \(-0.818292\pi\)
0.841441 0.540350i \(-0.181708\pi\)
\(828\) 0 0
\(829\) −850.000 −1.02533 −0.512666 0.858588i \(-0.671342\pi\)
−0.512666 + 0.858588i \(0.671342\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 924.915i 1.11034i
\(834\) 0 0
\(835\) 1362.69i 1.63197i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −440.851 −0.525449 −0.262724 0.964871i \(-0.584621\pi\)
−0.262724 + 0.964871i \(0.584621\pi\)
\(840\) 0 0
\(841\) −359.000 −0.426873
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −210.252 −0.248819
\(846\) 0 0
\(847\) 1380.00 340.673i 1.62928 0.402211i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −1695.58 −1.99246
\(852\) 0 0
\(853\) 1069.01i 1.25323i −0.779328 0.626617i \(-0.784439\pi\)
0.779328 0.626617i \(-0.215561\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 963.020i 1.12371i −0.827235 0.561855i \(-0.810088\pi\)
0.827235 0.561855i \(-0.189912\pi\)
\(858\) 0 0
\(859\) 820.000 0.954598 0.477299 0.878741i \(-0.341616\pi\)
0.477299 + 0.878741i \(0.341616\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 779.968 0.903787 0.451893 0.892072i \(-0.350749\pi\)
0.451893 + 0.892072i \(0.350749\pi\)
\(864\) 0 0
\(865\) 2067.53i 2.39021i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 508.675 + 398.372i 0.585356 + 0.458425i
\(870\) 0 0
\(871\) 117.473i 0.134872i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 318.697i 0.364226i
\(876\) 0 0
\(877\) 693.093i 0.790300i −0.918617 0.395150i \(-0.870693\pi\)
0.918617 0.395150i \(-0.129307\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −1492.11 −1.69366 −0.846829 0.531865i \(-0.821491\pi\)
−0.846829 + 0.531865i \(0.821491\pi\)
\(882\) 0 0
\(883\) −230.000 −0.260476 −0.130238 0.991483i \(-0.541574\pi\)
−0.130238 + 0.991483i \(0.541574\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 547.328i 0.617055i −0.951215 0.308528i \(-0.900164\pi\)
0.951215 0.308528i \(-0.0998362\pi\)
\(888\) 0 0
\(889\) −1242.00 −1.39708
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) −1012.00 −1.13073
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 346.410i 0.385328i
\(900\) 0 0
\(901\) 352.420i 0.391143i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 881.703 0.974257
\(906\) 0 0
\(907\) 430.000 0.474090 0.237045 0.971499i \(-0.423821\pi\)
0.237045 + 0.971499i \(0.423821\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −155.994 −0.171233 −0.0856167 0.996328i \(-0.527286\pi\)
−0.0856167 + 0.996328i \(0.527286\pi\)
\(912\) 0 0
\(913\) 660.000 + 516.883i 0.722892 + 0.566137i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −406.940 −0.443773
\(918\) 0 0
\(919\) 1233.47i 1.34219i −0.741372 0.671094i \(-0.765825\pi\)
0.741372 0.671094i \(-0.234175\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 398.372i 0.431605i
\(924\) 0 0
\(925\) 1050.00 1.13514
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 949.526 1.02209 0.511047 0.859552i \(-0.329258\pi\)
0.511047 + 0.859552i \(0.329258\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 610.410 + 478.046i 0.652845 + 0.511279i
\(936\) 0 0
\(937\) 986.777i 1.05312i −0.850137 0.526562i \(-0.823481\pi\)
0.850137 0.526562i \(-0.176519\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 34.6410i 0.0368130i −0.999831 0.0184065i \(-0.994141\pi\)
0.999831 0.0184065i \(-0.00585930\pi\)
\(942\) 0 0
\(943\) 1174.73i 1.24574i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 271.293 0.286476 0.143238 0.989688i \(-0.454248\pi\)
0.143238 + 0.989688i \(0.454248\pi\)
\(948\) 0 0
\(949\) 828.000 0.872497
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 145.492i 0.152668i −0.997082 0.0763338i \(-0.975679\pi\)
0.997082 0.0763338i \(-0.0243215\pi\)
\(954\) 0 0
\(955\) −598.000 −0.626178
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 3186.97i 3.32323i
\(960\) 0 0
\(961\) −861.000 −0.895942
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 1274.79i 1.32103i
\(966\) 0 0
\(967\) 693.093i 0.716746i 0.933579 + 0.358373i \(0.116668\pi\)
−0.933579 + 0.358373i \(0.883332\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −868.138 −0.894066 −0.447033 0.894517i \(-0.647519\pi\)
−0.447033 + 0.894517i \(0.647519\pi\)
\(972\) 0 0
\(973\) 1380.00 1.41829
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −881.703 −0.902459 −0.451230 0.892408i \(-0.649014\pi\)
−0.451230 + 0.892408i \(0.649014\pi\)
\(978\) 0 0
\(979\) −92.0000 + 117.473i −0.0939734 + 0.119993i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −33.9116 −0.0344981 −0.0172491 0.999851i \(-0.505491\pi\)
−0.0172491 + 0.999851i \(0.505491\pi\)
\(984\) 0 0
\(985\) 281.936i 0.286230i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 1593.49i 1.61121i
\(990\) 0 0
\(991\) −830.000 −0.837538 −0.418769 0.908093i \(-0.637538\pi\)
−0.418769 + 0.908093i \(0.637538\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −1370.03 −1.37692
\(996\) 0 0
\(997\) 1186.48i 1.19005i 0.803707 + 0.595026i \(0.202858\pi\)
−0.803707 + 0.595026i \(0.797142\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1584.3.j.i.1297.2 4
3.2 odd 2 inner 1584.3.j.i.1297.4 4
4.3 odd 2 99.3.c.c.10.1 4
11.10 odd 2 inner 1584.3.j.i.1297.1 4
12.11 even 2 99.3.c.c.10.4 yes 4
33.32 even 2 inner 1584.3.j.i.1297.3 4
44.43 even 2 99.3.c.c.10.3 yes 4
132.131 odd 2 99.3.c.c.10.2 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
99.3.c.c.10.1 4 4.3 odd 2
99.3.c.c.10.2 yes 4 132.131 odd 2
99.3.c.c.10.3 yes 4 44.43 even 2
99.3.c.c.10.4 yes 4 12.11 even 2
1584.3.j.i.1297.1 4 11.10 odd 2 inner
1584.3.j.i.1297.2 4 1.1 even 1 trivial
1584.3.j.i.1297.3 4 33.32 even 2 inner
1584.3.j.i.1297.4 4 3.2 odd 2 inner