Properties

Label 2-1568-7.4-c1-0-14
Degree $2$
Conductor $1568$
Sign $0.991 - 0.126i$
Analytic cond. $12.5205$
Root an. cond. $3.53843$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.207 + 0.358i)3-s + (−0.914 − 1.58i)5-s + (1.41 + 2.44i)9-s + (1.20 − 2.09i)11-s − 2.82·13-s + 0.757·15-s + (−0.0857 + 0.148i)17-s + (3.20 + 5.55i)19-s + (2.62 + 4.54i)23-s + (0.828 − 1.43i)25-s − 2.41·27-s − 2.82·29-s + (2.79 − 4.83i)31-s + (0.5 + 0.866i)33-s + (−4.32 − 7.49i)37-s + ⋯
L(s)  = 1  + (−0.119 + 0.207i)3-s + (−0.408 − 0.708i)5-s + (0.471 + 0.816i)9-s + (0.363 − 0.630i)11-s − 0.784·13-s + 0.195·15-s + (−0.0208 + 0.0360i)17-s + (0.735 + 1.27i)19-s + (0.546 + 0.946i)23-s + (0.165 − 0.286i)25-s − 0.464·27-s − 0.525·29-s + (0.501 − 0.868i)31-s + (0.0870 + 0.150i)33-s + (−0.711 − 1.23i)37-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1568 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.991 - 0.126i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1568 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.991 - 0.126i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1568\)    =    \(2^{5} \cdot 7^{2}\)
Sign: $0.991 - 0.126i$
Analytic conductor: \(12.5205\)
Root analytic conductor: \(3.53843\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1568} (1537, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1568,\ (\ :1/2),\ 0.991 - 0.126i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.538222306\)
\(L(\frac12)\) \(\approx\) \(1.538222306\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 \)
good3 \( 1 + (0.207 - 0.358i)T + (-1.5 - 2.59i)T^{2} \)
5 \( 1 + (0.914 + 1.58i)T + (-2.5 + 4.33i)T^{2} \)
11 \( 1 + (-1.20 + 2.09i)T + (-5.5 - 9.52i)T^{2} \)
13 \( 1 + 2.82T + 13T^{2} \)
17 \( 1 + (0.0857 - 0.148i)T + (-8.5 - 14.7i)T^{2} \)
19 \( 1 + (-3.20 - 5.55i)T + (-9.5 + 16.4i)T^{2} \)
23 \( 1 + (-2.62 - 4.54i)T + (-11.5 + 19.9i)T^{2} \)
29 \( 1 + 2.82T + 29T^{2} \)
31 \( 1 + (-2.79 + 4.83i)T + (-15.5 - 26.8i)T^{2} \)
37 \( 1 + (4.32 + 7.49i)T + (-18.5 + 32.0i)T^{2} \)
41 \( 1 - 6.82T + 41T^{2} \)
43 \( 1 - 9.65T + 43T^{2} \)
47 \( 1 + (-5.20 - 9.01i)T + (-23.5 + 40.7i)T^{2} \)
53 \( 1 + (-0.5 + 0.866i)T + (-26.5 - 45.8i)T^{2} \)
59 \( 1 + (-5.44 + 9.43i)T + (-29.5 - 51.0i)T^{2} \)
61 \( 1 + (-4.32 - 7.49i)T + (-30.5 + 52.8i)T^{2} \)
67 \( 1 + (-1.37 + 2.38i)T + (-33.5 - 58.0i)T^{2} \)
71 \( 1 - 13.6T + 71T^{2} \)
73 \( 1 + (7.32 - 12.6i)T + (-36.5 - 63.2i)T^{2} \)
79 \( 1 + (3.03 + 5.25i)T + (-39.5 + 68.4i)T^{2} \)
83 \( 1 - 7.31T + 83T^{2} \)
89 \( 1 + (4.5 + 7.79i)T + (-44.5 + 77.0i)T^{2} \)
97 \( 1 - 1.17T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.464689745684475067873075864964, −8.682304768496211047202665608739, −7.69353801447758776167500645512, −7.39999857349200041428003324030, −5.95782047203886721248827000010, −5.32650836372109110286485274368, −4.39704154661888865035613208834, −3.66473511156447900336969980304, −2.27970884939394639853815862053, −0.946858699384984464880243431915, 0.856003041821308458402835168201, 2.41116075464479929405244501141, 3.34745647369644728177327230240, 4.36976272927884562404011756321, 5.20940980766958923835170279150, 6.48888973743297127957686150493, 7.06413429818813872030795181233, 7.44970810720742688384904364529, 8.759374371269363547659652219158, 9.406998010547193508083420599649

Graph of the $Z$-function along the critical line