L(s) = 1 | + (−0.207 + 0.358i)3-s + (−0.914 − 1.58i)5-s + (1.41 + 2.44i)9-s + (1.20 − 2.09i)11-s − 2.82·13-s + 0.757·15-s + (−0.0857 + 0.148i)17-s + (3.20 + 5.55i)19-s + (2.62 + 4.54i)23-s + (0.828 − 1.43i)25-s − 2.41·27-s − 2.82·29-s + (2.79 − 4.83i)31-s + (0.5 + 0.866i)33-s + (−4.32 − 7.49i)37-s + ⋯ |
L(s) = 1 | + (−0.119 + 0.207i)3-s + (−0.408 − 0.708i)5-s + (0.471 + 0.816i)9-s + (0.363 − 0.630i)11-s − 0.784·13-s + 0.195·15-s + (−0.0208 + 0.0360i)17-s + (0.735 + 1.27i)19-s + (0.546 + 0.946i)23-s + (0.165 − 0.286i)25-s − 0.464·27-s − 0.525·29-s + (0.501 − 0.868i)31-s + (0.0870 + 0.150i)33-s + (−0.711 − 1.23i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1568 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.991 - 0.126i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1568 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.991 - 0.126i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.538222306\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.538222306\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 \) |
good | 3 | \( 1 + (0.207 - 0.358i)T + (-1.5 - 2.59i)T^{2} \) |
| 5 | \( 1 + (0.914 + 1.58i)T + (-2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (-1.20 + 2.09i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + 2.82T + 13T^{2} \) |
| 17 | \( 1 + (0.0857 - 0.148i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-3.20 - 5.55i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-2.62 - 4.54i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + 2.82T + 29T^{2} \) |
| 31 | \( 1 + (-2.79 + 4.83i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (4.32 + 7.49i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 - 6.82T + 41T^{2} \) |
| 43 | \( 1 - 9.65T + 43T^{2} \) |
| 47 | \( 1 + (-5.20 - 9.01i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-0.5 + 0.866i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-5.44 + 9.43i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-4.32 - 7.49i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-1.37 + 2.38i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 13.6T + 71T^{2} \) |
| 73 | \( 1 + (7.32 - 12.6i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (3.03 + 5.25i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 - 7.31T + 83T^{2} \) |
| 89 | \( 1 + (4.5 + 7.79i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 - 1.17T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.464689745684475067873075864964, −8.682304768496211047202665608739, −7.69353801447758776167500645512, −7.39999857349200041428003324030, −5.95782047203886721248827000010, −5.32650836372109110286485274368, −4.39704154661888865035613208834, −3.66473511156447900336969980304, −2.27970884939394639853815862053, −0.946858699384984464880243431915,
0.856003041821308458402835168201, 2.41116075464479929405244501141, 3.34745647369644728177327230240, 4.36976272927884562404011756321, 5.20940980766958923835170279150, 6.48888973743297127957686150493, 7.06413429818813872030795181233, 7.44970810720742688384904364529, 8.759374371269363547659652219158, 9.406998010547193508083420599649