Properties

Label 1568.2.i.x.1537.1
Level $1568$
Weight $2$
Character 1568.1537
Analytic conductor $12.521$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1568,2,Mod(961,1568)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1568, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1568.961"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1568 = 2^{5} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1568.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,2,0,2,0,0,0,0,0,2,0,0,0,20,0,-6,0,10,0,0,0,2,0,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(25)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.5205430369\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{2}, \sqrt{-3})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 224)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 1537.1
Root \(-0.707107 + 1.22474i\) of defining polynomial
Character \(\chi\) \(=\) 1568.1537
Dual form 1568.2.i.x.961.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.207107 + 0.358719i) q^{3} +(-0.914214 - 1.58346i) q^{5} +(1.41421 + 2.44949i) q^{9} +(1.20711 - 2.09077i) q^{11} -2.82843 q^{13} +0.757359 q^{15} +(-0.0857864 + 0.148586i) q^{17} +(3.20711 + 5.55487i) q^{19} +(2.62132 + 4.54026i) q^{23} +(0.828427 - 1.43488i) q^{25} -2.41421 q^{27} -2.82843 q^{29} +(2.79289 - 4.83743i) q^{31} +(0.500000 + 0.866025i) q^{33} +(-4.32843 - 7.49706i) q^{37} +(0.585786 - 1.01461i) q^{39} +6.82843 q^{41} +9.65685 q^{43} +(2.58579 - 4.47871i) q^{45} +(5.20711 + 9.01897i) q^{47} +(-0.0355339 - 0.0615465i) q^{51} +(0.500000 - 0.866025i) q^{53} -4.41421 q^{55} -2.65685 q^{57} +(5.44975 - 9.43924i) q^{59} +(4.32843 + 7.49706i) q^{61} +(2.58579 + 4.47871i) q^{65} +(1.37868 - 2.38794i) q^{67} -2.17157 q^{69} +13.6569 q^{71} +(-7.32843 + 12.6932i) q^{73} +(0.343146 + 0.594346i) q^{75} +(-3.03553 - 5.25770i) q^{79} +(-3.74264 + 6.48244i) q^{81} +7.31371 q^{83} +0.313708 q^{85} +(0.585786 - 1.01461i) q^{87} +(-4.50000 - 7.79423i) q^{89} +(1.15685 + 2.00373i) q^{93} +(5.86396 - 10.1567i) q^{95} +1.17157 q^{97} +6.82843 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{3} + 2 q^{5} + 2 q^{11} + 20 q^{15} - 6 q^{17} + 10 q^{19} + 2 q^{23} - 8 q^{25} - 4 q^{27} + 14 q^{31} + 2 q^{33} - 6 q^{37} + 8 q^{39} + 16 q^{41} + 16 q^{43} + 16 q^{45} + 18 q^{47} + 14 q^{51}+ \cdots + 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1568\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(1471\) \(1473\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.207107 + 0.358719i −0.119573 + 0.207107i −0.919599 0.392859i \(-0.871486\pi\)
0.800025 + 0.599966i \(0.204819\pi\)
\(4\) 0 0
\(5\) −0.914214 1.58346i −0.408849 0.708147i 0.585912 0.810374i \(-0.300736\pi\)
−0.994761 + 0.102228i \(0.967403\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 1.41421 + 2.44949i 0.471405 + 0.816497i
\(10\) 0 0
\(11\) 1.20711 2.09077i 0.363956 0.630391i −0.624652 0.780903i \(-0.714759\pi\)
0.988608 + 0.150513i \(0.0480924\pi\)
\(12\) 0 0
\(13\) −2.82843 −0.784465 −0.392232 0.919866i \(-0.628297\pi\)
−0.392232 + 0.919866i \(0.628297\pi\)
\(14\) 0 0
\(15\) 0.757359 0.195549
\(16\) 0 0
\(17\) −0.0857864 + 0.148586i −0.0208063 + 0.0360375i −0.876241 0.481873i \(-0.839957\pi\)
0.855435 + 0.517911i \(0.173290\pi\)
\(18\) 0 0
\(19\) 3.20711 + 5.55487i 0.735761 + 1.27438i 0.954389 + 0.298567i \(0.0965085\pi\)
−0.218628 + 0.975808i \(0.570158\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 2.62132 + 4.54026i 0.546583 + 0.946710i 0.998505 + 0.0546524i \(0.0174051\pi\)
−0.451922 + 0.892057i \(0.649262\pi\)
\(24\) 0 0
\(25\) 0.828427 1.43488i 0.165685 0.286976i
\(26\) 0 0
\(27\) −2.41421 −0.464616
\(28\) 0 0
\(29\) −2.82843 −0.525226 −0.262613 0.964901i \(-0.584584\pi\)
−0.262613 + 0.964901i \(0.584584\pi\)
\(30\) 0 0
\(31\) 2.79289 4.83743i 0.501618 0.868829i −0.498380 0.866959i \(-0.666071\pi\)
0.999998 0.00186981i \(-0.000595180\pi\)
\(32\) 0 0
\(33\) 0.500000 + 0.866025i 0.0870388 + 0.150756i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −4.32843 7.49706i −0.711589 1.23251i −0.964260 0.264956i \(-0.914642\pi\)
0.252671 0.967552i \(-0.418691\pi\)
\(38\) 0 0
\(39\) 0.585786 1.01461i 0.0938009 0.162468i
\(40\) 0 0
\(41\) 6.82843 1.06642 0.533211 0.845983i \(-0.320985\pi\)
0.533211 + 0.845983i \(0.320985\pi\)
\(42\) 0 0
\(43\) 9.65685 1.47266 0.736328 0.676625i \(-0.236558\pi\)
0.736328 + 0.676625i \(0.236558\pi\)
\(44\) 0 0
\(45\) 2.58579 4.47871i 0.385466 0.667647i
\(46\) 0 0
\(47\) 5.20711 + 9.01897i 0.759535 + 1.31555i 0.943088 + 0.332543i \(0.107907\pi\)
−0.183554 + 0.983010i \(0.558760\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) −0.0355339 0.0615465i −0.00497574 0.00861824i
\(52\) 0 0
\(53\) 0.500000 0.866025i 0.0686803 0.118958i −0.829640 0.558298i \(-0.811454\pi\)
0.898321 + 0.439340i \(0.144788\pi\)
\(54\) 0 0
\(55\) −4.41421 −0.595212
\(56\) 0 0
\(57\) −2.65685 −0.351909
\(58\) 0 0
\(59\) 5.44975 9.43924i 0.709497 1.22888i −0.255547 0.966797i \(-0.582256\pi\)
0.965044 0.262088i \(-0.0844110\pi\)
\(60\) 0 0
\(61\) 4.32843 + 7.49706i 0.554198 + 0.959900i 0.997965 + 0.0637575i \(0.0203084\pi\)
−0.443767 + 0.896142i \(0.646358\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 2.58579 + 4.47871i 0.320727 + 0.555516i
\(66\) 0 0
\(67\) 1.37868 2.38794i 0.168433 0.291734i −0.769436 0.638723i \(-0.779463\pi\)
0.937869 + 0.346990i \(0.112796\pi\)
\(68\) 0 0
\(69\) −2.17157 −0.261427
\(70\) 0 0
\(71\) 13.6569 1.62077 0.810385 0.585897i \(-0.199258\pi\)
0.810385 + 0.585897i \(0.199258\pi\)
\(72\) 0 0
\(73\) −7.32843 + 12.6932i −0.857728 + 1.48563i 0.0163639 + 0.999866i \(0.494791\pi\)
−0.874091 + 0.485762i \(0.838542\pi\)
\(74\) 0 0
\(75\) 0.343146 + 0.594346i 0.0396231 + 0.0686292i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −3.03553 5.25770i −0.341524 0.591537i 0.643192 0.765705i \(-0.277610\pi\)
−0.984716 + 0.174168i \(0.944276\pi\)
\(80\) 0 0
\(81\) −3.74264 + 6.48244i −0.415849 + 0.720272i
\(82\) 0 0
\(83\) 7.31371 0.802784 0.401392 0.915906i \(-0.368527\pi\)
0.401392 + 0.915906i \(0.368527\pi\)
\(84\) 0 0
\(85\) 0.313708 0.0340265
\(86\) 0 0
\(87\) 0.585786 1.01461i 0.0628029 0.108778i
\(88\) 0 0
\(89\) −4.50000 7.79423i −0.476999 0.826187i 0.522654 0.852545i \(-0.324942\pi\)
−0.999653 + 0.0263586i \(0.991609\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 1.15685 + 2.00373i 0.119960 + 0.207777i
\(94\) 0 0
\(95\) 5.86396 10.1567i 0.601630 1.04205i
\(96\) 0 0
\(97\) 1.17157 0.118955 0.0594776 0.998230i \(-0.481057\pi\)
0.0594776 + 0.998230i \(0.481057\pi\)
\(98\) 0 0
\(99\) 6.82843 0.686283
\(100\) 0 0
\(101\) 6.74264 11.6786i 0.670918 1.16206i −0.306726 0.951798i \(-0.599234\pi\)
0.977644 0.210266i \(-0.0674330\pi\)
\(102\) 0 0
\(103\) 4.20711 + 7.28692i 0.414539 + 0.718002i 0.995380 0.0960150i \(-0.0306097\pi\)
−0.580841 + 0.814017i \(0.697276\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 6.44975 + 11.1713i 0.623521 + 1.07997i 0.988825 + 0.149081i \(0.0476316\pi\)
−0.365304 + 0.930888i \(0.619035\pi\)
\(108\) 0 0
\(109\) 4.08579 7.07679i 0.391347 0.677834i −0.601280 0.799038i \(-0.705342\pi\)
0.992628 + 0.121205i \(0.0386758\pi\)
\(110\) 0 0
\(111\) 3.58579 0.340348
\(112\) 0 0
\(113\) 18.1421 1.70667 0.853334 0.521364i \(-0.174577\pi\)
0.853334 + 0.521364i \(0.174577\pi\)
\(114\) 0 0
\(115\) 4.79289 8.30153i 0.446940 0.774122i
\(116\) 0 0
\(117\) −4.00000 6.92820i −0.369800 0.640513i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 2.58579 + 4.47871i 0.235071 + 0.407156i
\(122\) 0 0
\(123\) −1.41421 + 2.44949i −0.127515 + 0.220863i
\(124\) 0 0
\(125\) −12.1716 −1.08866
\(126\) 0 0
\(127\) −5.65685 −0.501965 −0.250982 0.967992i \(-0.580754\pi\)
−0.250982 + 0.967992i \(0.580754\pi\)
\(128\) 0 0
\(129\) −2.00000 + 3.46410i −0.176090 + 0.304997i
\(130\) 0 0
\(131\) 3.86396 + 6.69258i 0.337596 + 0.584733i 0.983980 0.178279i \(-0.0570530\pi\)
−0.646384 + 0.763012i \(0.723720\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 2.20711 + 3.82282i 0.189958 + 0.329016i
\(136\) 0 0
\(137\) −5.57107 + 9.64937i −0.475968 + 0.824402i −0.999621 0.0275304i \(-0.991236\pi\)
0.523653 + 0.851932i \(0.324569\pi\)
\(138\) 0 0
\(139\) −15.3137 −1.29889 −0.649446 0.760408i \(-0.724999\pi\)
−0.649446 + 0.760408i \(0.724999\pi\)
\(140\) 0 0
\(141\) −4.31371 −0.363280
\(142\) 0 0
\(143\) −3.41421 + 5.91359i −0.285511 + 0.494519i
\(144\) 0 0
\(145\) 2.58579 + 4.47871i 0.214738 + 0.371937i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −3.08579 5.34474i −0.252797 0.437858i 0.711497 0.702689i \(-0.248017\pi\)
−0.964295 + 0.264831i \(0.914684\pi\)
\(150\) 0 0
\(151\) −0.449747 + 0.778985i −0.0365999 + 0.0633929i −0.883745 0.467969i \(-0.844986\pi\)
0.847145 + 0.531361i \(0.178319\pi\)
\(152\) 0 0
\(153\) −0.485281 −0.0392327
\(154\) 0 0
\(155\) −10.2132 −0.820344
\(156\) 0 0
\(157\) 4.67157 8.09140i 0.372832 0.645764i −0.617168 0.786831i \(-0.711720\pi\)
0.990000 + 0.141067i \(0.0450534\pi\)
\(158\) 0 0
\(159\) 0.207107 + 0.358719i 0.0164246 + 0.0284483i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −3.37868 5.85204i −0.264639 0.458368i 0.702830 0.711358i \(-0.251919\pi\)
−0.967469 + 0.252990i \(0.918586\pi\)
\(164\) 0 0
\(165\) 0.914214 1.58346i 0.0711714 0.123273i
\(166\) 0 0
\(167\) −2.00000 −0.154765 −0.0773823 0.997001i \(-0.524656\pi\)
−0.0773823 + 0.997001i \(0.524656\pi\)
\(168\) 0 0
\(169\) −5.00000 −0.384615
\(170\) 0 0
\(171\) −9.07107 + 15.7116i −0.693682 + 1.20149i
\(172\) 0 0
\(173\) 5.50000 + 9.52628i 0.418157 + 0.724270i 0.995754 0.0920525i \(-0.0293428\pi\)
−0.577597 + 0.816322i \(0.696009\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 2.25736 + 3.90986i 0.169674 + 0.293883i
\(178\) 0 0
\(179\) −2.79289 + 4.83743i −0.208751 + 0.361567i −0.951321 0.308201i \(-0.900273\pi\)
0.742571 + 0.669768i \(0.233606\pi\)
\(180\) 0 0
\(181\) 9.31371 0.692283 0.346141 0.938182i \(-0.387492\pi\)
0.346141 + 0.938182i \(0.387492\pi\)
\(182\) 0 0
\(183\) −3.58579 −0.265069
\(184\) 0 0
\(185\) −7.91421 + 13.7078i −0.581865 + 1.00782i
\(186\) 0 0
\(187\) 0.207107 + 0.358719i 0.0151451 + 0.0262322i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 4.44975 + 7.70719i 0.321972 + 0.557673i 0.980895 0.194538i \(-0.0623208\pi\)
−0.658923 + 0.752211i \(0.728987\pi\)
\(192\) 0 0
\(193\) 4.57107 7.91732i 0.329033 0.569901i −0.653288 0.757110i \(-0.726611\pi\)
0.982320 + 0.187209i \(0.0599440\pi\)
\(194\) 0 0
\(195\) −2.14214 −0.153402
\(196\) 0 0
\(197\) −18.8284 −1.34147 −0.670735 0.741697i \(-0.734021\pi\)
−0.670735 + 0.741697i \(0.734021\pi\)
\(198\) 0 0
\(199\) 5.62132 9.73641i 0.398485 0.690196i −0.595054 0.803685i \(-0.702869\pi\)
0.993539 + 0.113489i \(0.0362028\pi\)
\(200\) 0 0
\(201\) 0.571068 + 0.989118i 0.0402800 + 0.0697670i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −6.24264 10.8126i −0.436005 0.755183i
\(206\) 0 0
\(207\) −7.41421 + 12.8418i −0.515323 + 0.892566i
\(208\) 0 0
\(209\) 15.4853 1.07114
\(210\) 0 0
\(211\) −12.0000 −0.826114 −0.413057 0.910705i \(-0.635539\pi\)
−0.413057 + 0.910705i \(0.635539\pi\)
\(212\) 0 0
\(213\) −2.82843 + 4.89898i −0.193801 + 0.335673i
\(214\) 0 0
\(215\) −8.82843 15.2913i −0.602094 1.04286i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) −3.03553 5.25770i −0.205122 0.355282i
\(220\) 0 0
\(221\) 0.242641 0.420266i 0.0163218 0.0282702i
\(222\) 0 0
\(223\) −2.34315 −0.156909 −0.0784543 0.996918i \(-0.524998\pi\)
−0.0784543 + 0.996918i \(0.524998\pi\)
\(224\) 0 0
\(225\) 4.68629 0.312419
\(226\) 0 0
\(227\) −8.03553 + 13.9180i −0.533337 + 0.923767i 0.465905 + 0.884835i \(0.345729\pi\)
−0.999242 + 0.0389321i \(0.987604\pi\)
\(228\) 0 0
\(229\) −2.08579 3.61269i −0.137833 0.238733i 0.788843 0.614594i \(-0.210680\pi\)
−0.926676 + 0.375861i \(0.877347\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −1.08579 1.88064i −0.0711322 0.123205i 0.828266 0.560336i \(-0.189328\pi\)
−0.899398 + 0.437131i \(0.855995\pi\)
\(234\) 0 0
\(235\) 9.52082 16.4905i 0.621070 1.07572i
\(236\) 0 0
\(237\) 2.51472 0.163349
\(238\) 0 0
\(239\) 1.31371 0.0849767 0.0424884 0.999097i \(-0.486471\pi\)
0.0424884 + 0.999097i \(0.486471\pi\)
\(240\) 0 0
\(241\) 5.15685 8.93193i 0.332182 0.575356i −0.650757 0.759286i \(-0.725548\pi\)
0.982939 + 0.183929i \(0.0588818\pi\)
\(242\) 0 0
\(243\) −5.17157 8.95743i −0.331757 0.574619i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −9.07107 15.7116i −0.577178 0.999702i
\(248\) 0 0
\(249\) −1.51472 + 2.62357i −0.0959914 + 0.166262i
\(250\) 0 0
\(251\) 30.9706 1.95484 0.977422 0.211295i \(-0.0677681\pi\)
0.977422 + 0.211295i \(0.0677681\pi\)
\(252\) 0 0
\(253\) 12.6569 0.795730
\(254\) 0 0
\(255\) −0.0649712 + 0.112533i −0.00406865 + 0.00704711i
\(256\) 0 0
\(257\) 2.25736 + 3.90986i 0.140810 + 0.243890i 0.927802 0.373073i \(-0.121696\pi\)
−0.786992 + 0.616964i \(0.788363\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −4.00000 6.92820i −0.247594 0.428845i
\(262\) 0 0
\(263\) −5.44975 + 9.43924i −0.336046 + 0.582048i −0.983685 0.179899i \(-0.942423\pi\)
0.647639 + 0.761947i \(0.275756\pi\)
\(264\) 0 0
\(265\) −1.82843 −0.112319
\(266\) 0 0
\(267\) 3.72792 0.228145
\(268\) 0 0
\(269\) 6.32843 10.9612i 0.385851 0.668314i −0.606036 0.795437i \(-0.707241\pi\)
0.991887 + 0.127124i \(0.0405745\pi\)
\(270\) 0 0
\(271\) −15.1066 26.1654i −0.917661 1.58943i −0.802958 0.596035i \(-0.796742\pi\)
−0.114702 0.993400i \(-0.536591\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −2.00000 3.46410i −0.120605 0.208893i
\(276\) 0 0
\(277\) −5.15685 + 8.93193i −0.309845 + 0.536668i −0.978328 0.207060i \(-0.933611\pi\)
0.668483 + 0.743727i \(0.266944\pi\)
\(278\) 0 0
\(279\) 15.7990 0.945861
\(280\) 0 0
\(281\) −12.4853 −0.744809 −0.372405 0.928070i \(-0.621467\pi\)
−0.372405 + 0.928070i \(0.621467\pi\)
\(282\) 0 0
\(283\) 2.79289 4.83743i 0.166020 0.287556i −0.770997 0.636839i \(-0.780242\pi\)
0.937017 + 0.349283i \(0.113575\pi\)
\(284\) 0 0
\(285\) 2.42893 + 4.20703i 0.143878 + 0.249203i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 8.48528 + 14.6969i 0.499134 + 0.864526i
\(290\) 0 0
\(291\) −0.242641 + 0.420266i −0.0142238 + 0.0246364i
\(292\) 0 0
\(293\) −28.6274 −1.67243 −0.836216 0.548401i \(-0.815237\pi\)
−0.836216 + 0.548401i \(0.815237\pi\)
\(294\) 0 0
\(295\) −19.9289 −1.16031
\(296\) 0 0
\(297\) −2.91421 + 5.04757i −0.169100 + 0.292889i
\(298\) 0 0
\(299\) −7.41421 12.8418i −0.428775 0.742660i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 2.79289 + 4.83743i 0.160448 + 0.277903i
\(304\) 0 0
\(305\) 7.91421 13.7078i 0.453167 0.784907i
\(306\) 0 0
\(307\) −14.3431 −0.818607 −0.409303 0.912398i \(-0.634228\pi\)
−0.409303 + 0.912398i \(0.634228\pi\)
\(308\) 0 0
\(309\) −3.48528 −0.198271
\(310\) 0 0
\(311\) −9.37868 + 16.2443i −0.531816 + 0.921133i 0.467494 + 0.883996i \(0.345157\pi\)
−0.999310 + 0.0371364i \(0.988176\pi\)
\(312\) 0 0
\(313\) −14.6421 25.3609i −0.827622 1.43348i −0.899898 0.436099i \(-0.856360\pi\)
0.0722760 0.997385i \(-0.476974\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 4.84315 + 8.38857i 0.272018 + 0.471149i 0.969379 0.245571i \(-0.0789756\pi\)
−0.697360 + 0.716721i \(0.745642\pi\)
\(318\) 0 0
\(319\) −3.41421 + 5.91359i −0.191159 + 0.331098i
\(320\) 0 0
\(321\) −5.34315 −0.298225
\(322\) 0 0
\(323\) −1.10051 −0.0612337
\(324\) 0 0
\(325\) −2.34315 + 4.05845i −0.129974 + 0.225122i
\(326\) 0 0
\(327\) 1.69239 + 2.93130i 0.0935893 + 0.162101i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −14.2071 24.6074i −0.780893 1.35255i −0.931422 0.363941i \(-0.881431\pi\)
0.150529 0.988606i \(-0.451902\pi\)
\(332\) 0 0
\(333\) 12.2426 21.2049i 0.670893 1.16202i
\(334\) 0 0
\(335\) −5.04163 −0.275454
\(336\) 0 0
\(337\) 9.17157 0.499607 0.249804 0.968296i \(-0.419634\pi\)
0.249804 + 0.968296i \(0.419634\pi\)
\(338\) 0 0
\(339\) −3.75736 + 6.50794i −0.204072 + 0.353463i
\(340\) 0 0
\(341\) −6.74264 11.6786i −0.365134 0.632431i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 1.98528 + 3.43861i 0.106884 + 0.185128i
\(346\) 0 0
\(347\) −17.4497 + 30.2238i −0.936752 + 1.62250i −0.165271 + 0.986248i \(0.552850\pi\)
−0.771480 + 0.636253i \(0.780483\pi\)
\(348\) 0 0
\(349\) −5.17157 −0.276828 −0.138414 0.990374i \(-0.544200\pi\)
−0.138414 + 0.990374i \(0.544200\pi\)
\(350\) 0 0
\(351\) 6.82843 0.364474
\(352\) 0 0
\(353\) 1.08579 1.88064i 0.0577906 0.100096i −0.835683 0.549212i \(-0.814928\pi\)
0.893473 + 0.449116i \(0.148261\pi\)
\(354\) 0 0
\(355\) −12.4853 21.6251i −0.662650 1.14774i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −5.69239 9.85951i −0.300433 0.520365i 0.675801 0.737084i \(-0.263798\pi\)
−0.976234 + 0.216719i \(0.930464\pi\)
\(360\) 0 0
\(361\) −11.0711 + 19.1757i −0.582688 + 1.00924i
\(362\) 0 0
\(363\) −2.14214 −0.112433
\(364\) 0 0
\(365\) 26.7990 1.40272
\(366\) 0 0
\(367\) 2.13604 3.69973i 0.111500 0.193124i −0.804875 0.593444i \(-0.797768\pi\)
0.916375 + 0.400320i \(0.131101\pi\)
\(368\) 0 0
\(369\) 9.65685 + 16.7262i 0.502716 + 0.870729i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 4.15685 + 7.19988i 0.215234 + 0.372796i 0.953345 0.301883i \(-0.0976153\pi\)
−0.738111 + 0.674679i \(0.764282\pi\)
\(374\) 0 0
\(375\) 2.52082 4.36618i 0.130174 0.225469i
\(376\) 0 0
\(377\) 8.00000 0.412021
\(378\) 0 0
\(379\) −34.9706 −1.79632 −0.898159 0.439672i \(-0.855095\pi\)
−0.898159 + 0.439672i \(0.855095\pi\)
\(380\) 0 0
\(381\) 1.17157 2.02922i 0.0600215 0.103960i
\(382\) 0 0
\(383\) −5.62132 9.73641i −0.287236 0.497507i 0.685913 0.727684i \(-0.259403\pi\)
−0.973149 + 0.230176i \(0.926070\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 13.6569 + 23.6544i 0.694217 + 1.20242i
\(388\) 0 0
\(389\) −9.08579 + 15.7370i −0.460668 + 0.797900i −0.998994 0.0448365i \(-0.985723\pi\)
0.538327 + 0.842736i \(0.319057\pi\)
\(390\) 0 0
\(391\) −0.899495 −0.0454894
\(392\) 0 0
\(393\) −3.20101 −0.161470
\(394\) 0 0
\(395\) −5.55025 + 9.61332i −0.279264 + 0.483699i
\(396\) 0 0
\(397\) −2.08579 3.61269i −0.104683 0.181316i 0.808926 0.587911i \(-0.200049\pi\)
−0.913608 + 0.406595i \(0.866716\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −3.91421 6.77962i −0.195466 0.338558i 0.751587 0.659634i \(-0.229289\pi\)
−0.947053 + 0.321076i \(0.895955\pi\)
\(402\) 0 0
\(403\) −7.89949 + 13.6823i −0.393502 + 0.681565i
\(404\) 0 0
\(405\) 13.6863 0.680077
\(406\) 0 0
\(407\) −20.8995 −1.03595
\(408\) 0 0
\(409\) 7.22792 12.5191i 0.357398 0.619031i −0.630128 0.776492i \(-0.716997\pi\)
0.987525 + 0.157461i \(0.0503307\pi\)
\(410\) 0 0
\(411\) −2.30761 3.99690i −0.113826 0.197153i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −6.68629 11.5810i −0.328217 0.568489i
\(416\) 0 0
\(417\) 3.17157 5.49333i 0.155313 0.269009i
\(418\) 0 0
\(419\) −9.65685 −0.471768 −0.235884 0.971781i \(-0.575799\pi\)
−0.235884 + 0.971781i \(0.575799\pi\)
\(420\) 0 0
\(421\) −16.4853 −0.803443 −0.401722 0.915762i \(-0.631588\pi\)
−0.401722 + 0.915762i \(0.631588\pi\)
\(422\) 0 0
\(423\) −14.7279 + 25.5095i −0.716096 + 1.24031i
\(424\) 0 0
\(425\) 0.142136 + 0.246186i 0.00689459 + 0.0119418i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −1.41421 2.44949i −0.0682789 0.118262i
\(430\) 0 0
\(431\) 6.37868 11.0482i 0.307250 0.532173i −0.670510 0.741901i \(-0.733924\pi\)
0.977760 + 0.209728i \(0.0672578\pi\)
\(432\) 0 0
\(433\) −11.5147 −0.553362 −0.276681 0.960962i \(-0.589235\pi\)
−0.276681 + 0.960962i \(0.589235\pi\)
\(434\) 0 0
\(435\) −2.14214 −0.102708
\(436\) 0 0
\(437\) −16.8137 + 29.1222i −0.804309 + 1.39310i
\(438\) 0 0
\(439\) 11.3492 + 19.6575i 0.541670 + 0.938200i 0.998808 + 0.0488041i \(0.0155410\pi\)
−0.457139 + 0.889395i \(0.651126\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 5.96447 + 10.3308i 0.283380 + 0.490829i 0.972215 0.234089i \(-0.0752108\pi\)
−0.688835 + 0.724918i \(0.741877\pi\)
\(444\) 0 0
\(445\) −8.22792 + 14.2512i −0.390041 + 0.675571i
\(446\) 0 0
\(447\) 2.55635 0.120911
\(448\) 0 0
\(449\) 1.17157 0.0552899 0.0276450 0.999618i \(-0.491199\pi\)
0.0276450 + 0.999618i \(0.491199\pi\)
\(450\) 0 0
\(451\) 8.24264 14.2767i 0.388131 0.672262i
\(452\) 0 0
\(453\) −0.186292 0.322666i −0.00875274 0.0151602i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −9.64214 16.7007i −0.451040 0.781224i 0.547411 0.836864i \(-0.315614\pi\)
−0.998451 + 0.0556397i \(0.982280\pi\)
\(458\) 0 0
\(459\) 0.207107 0.358719i 0.00966692 0.0167436i
\(460\) 0 0
\(461\) 25.4558 1.18560 0.592798 0.805351i \(-0.298023\pi\)
0.592798 + 0.805351i \(0.298023\pi\)
\(462\) 0 0
\(463\) −11.3137 −0.525793 −0.262896 0.964824i \(-0.584678\pi\)
−0.262896 + 0.964824i \(0.584678\pi\)
\(464\) 0 0
\(465\) 2.11522 3.66367i 0.0980911 0.169899i
\(466\) 0 0
\(467\) −6.27817 10.8741i −0.290519 0.503194i 0.683413 0.730032i \(-0.260495\pi\)
−0.973933 + 0.226837i \(0.927161\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 1.93503 + 3.35157i 0.0891614 + 0.154432i
\(472\) 0 0
\(473\) 11.6569 20.1903i 0.535983 0.928349i
\(474\) 0 0
\(475\) 10.6274 0.487619
\(476\) 0 0
\(477\) 2.82843 0.129505
\(478\) 0 0
\(479\) −14.3492 + 24.8536i −0.655634 + 1.13559i 0.326101 + 0.945335i \(0.394265\pi\)
−0.981735 + 0.190256i \(0.939068\pi\)
\(480\) 0 0
\(481\) 12.2426 + 21.2049i 0.558216 + 0.966859i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −1.07107 1.85514i −0.0486347 0.0842377i
\(486\) 0 0
\(487\) 5.86396 10.1567i 0.265721 0.460243i −0.702031 0.712146i \(-0.747723\pi\)
0.967752 + 0.251903i \(0.0810565\pi\)
\(488\) 0 0
\(489\) 2.79899 0.126575
\(490\) 0 0
\(491\) 3.65685 0.165032 0.0825158 0.996590i \(-0.473705\pi\)
0.0825158 + 0.996590i \(0.473705\pi\)
\(492\) 0 0
\(493\) 0.242641 0.420266i 0.0109280 0.0189278i
\(494\) 0 0
\(495\) −6.24264 10.8126i −0.280586 0.485989i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 2.27817 + 3.94591i 0.101985 + 0.176643i 0.912502 0.409071i \(-0.134147\pi\)
−0.810517 + 0.585715i \(0.800814\pi\)
\(500\) 0 0
\(501\) 0.414214 0.717439i 0.0185057 0.0320528i
\(502\) 0 0
\(503\) 10.3431 0.461178 0.230589 0.973051i \(-0.425935\pi\)
0.230589 + 0.973051i \(0.425935\pi\)
\(504\) 0 0
\(505\) −24.6569 −1.09722
\(506\) 0 0
\(507\) 1.03553 1.79360i 0.0459897 0.0796565i
\(508\) 0 0
\(509\) 20.7426 + 35.9273i 0.919401 + 1.59245i 0.800326 + 0.599565i \(0.204660\pi\)
0.119075 + 0.992885i \(0.462007\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) −7.74264 13.4106i −0.341846 0.592095i
\(514\) 0 0
\(515\) 7.69239 13.3236i 0.338967 0.587108i
\(516\) 0 0
\(517\) 25.1421 1.10575
\(518\) 0 0
\(519\) −4.55635 −0.200002
\(520\) 0 0
\(521\) 3.50000 6.06218i 0.153338 0.265589i −0.779115 0.626881i \(-0.784331\pi\)
0.932453 + 0.361293i \(0.117664\pi\)
\(522\) 0 0
\(523\) 8.86396 + 15.3528i 0.387594 + 0.671332i 0.992125 0.125249i \(-0.0399729\pi\)
−0.604531 + 0.796581i \(0.706640\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0.479185 + 0.829972i 0.0208736 + 0.0361542i
\(528\) 0 0
\(529\) −2.24264 + 3.88437i −0.0975061 + 0.168886i
\(530\) 0 0
\(531\) 30.8284 1.33784
\(532\) 0 0
\(533\) −19.3137 −0.836570
\(534\) 0 0
\(535\) 11.7929 20.4259i 0.509851 0.883088i
\(536\) 0 0
\(537\) −1.15685 2.00373i −0.0499219 0.0864673i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 12.9142 + 22.3681i 0.555225 + 0.961679i 0.997886 + 0.0649894i \(0.0207013\pi\)
−0.442661 + 0.896689i \(0.645965\pi\)
\(542\) 0 0
\(543\) −1.92893 + 3.34101i −0.0827784 + 0.143376i
\(544\) 0 0
\(545\) −14.9411 −0.640007
\(546\) 0 0
\(547\) 10.9706 0.469067 0.234534 0.972108i \(-0.424644\pi\)
0.234534 + 0.972108i \(0.424644\pi\)
\(548\) 0 0
\(549\) −12.2426 + 21.2049i −0.522503 + 0.905002i
\(550\) 0 0
\(551\) −9.07107 15.7116i −0.386440 0.669335i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −3.27817 5.67796i −0.139151 0.241016i
\(556\) 0 0
\(557\) 0.0857864 0.148586i 0.00363489 0.00629581i −0.864202 0.503145i \(-0.832176\pi\)
0.867837 + 0.496849i \(0.165510\pi\)
\(558\) 0 0
\(559\) −27.3137 −1.15525
\(560\) 0 0
\(561\) −0.171573 −0.00724381
\(562\) 0 0
\(563\) −7.03553 + 12.1859i −0.296512 + 0.513575i −0.975336 0.220727i \(-0.929157\pi\)
0.678823 + 0.734302i \(0.262490\pi\)
\(564\) 0 0
\(565\) −16.5858 28.7274i −0.697769 1.20857i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −18.3284 31.7458i −0.768368 1.33085i −0.938448 0.345422i \(-0.887736\pi\)
0.170080 0.985430i \(-0.445597\pi\)
\(570\) 0 0
\(571\) 9.20711 15.9472i 0.385305 0.667369i −0.606506 0.795079i \(-0.707429\pi\)
0.991812 + 0.127710i \(0.0407628\pi\)
\(572\) 0 0
\(573\) −3.68629 −0.153997
\(574\) 0 0
\(575\) 8.68629 0.362243
\(576\) 0 0
\(577\) 19.5000 33.7750i 0.811796 1.40607i −0.0998105 0.995006i \(-0.531824\pi\)
0.911606 0.411065i \(-0.134843\pi\)
\(578\) 0 0
\(579\) 1.89340 + 3.27946i 0.0786869 + 0.136290i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −1.20711 2.09077i −0.0499933 0.0865909i
\(584\) 0 0
\(585\) −7.31371 + 12.6677i −0.302385 + 0.523746i
\(586\) 0 0
\(587\) −28.9706 −1.19574 −0.597872 0.801592i \(-0.703987\pi\)
−0.597872 + 0.801592i \(0.703987\pi\)
\(588\) 0 0
\(589\) 35.8284 1.47628
\(590\) 0 0
\(591\) 3.89949 6.75412i 0.160404 0.277828i
\(592\) 0 0
\(593\) 2.74264 + 4.75039i 0.112627 + 0.195075i 0.916829 0.399281i \(-0.130740\pi\)
−0.804202 + 0.594356i \(0.797407\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 2.32843 + 4.03295i 0.0952962 + 0.165058i
\(598\) 0 0
\(599\) −17.9350 + 31.0644i −0.732805 + 1.26926i 0.222874 + 0.974847i \(0.428456\pi\)
−0.955680 + 0.294409i \(0.904877\pi\)
\(600\) 0 0
\(601\) −26.1421 −1.06636 −0.533180 0.846002i \(-0.679003\pi\)
−0.533180 + 0.846002i \(0.679003\pi\)
\(602\) 0 0
\(603\) 7.79899 0.317599
\(604\) 0 0
\(605\) 4.72792 8.18900i 0.192217 0.332930i
\(606\) 0 0
\(607\) 17.6924 + 30.6441i 0.718112 + 1.24381i 0.961747 + 0.273939i \(0.0883267\pi\)
−0.243635 + 0.969867i \(0.578340\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −14.7279 25.5095i −0.595828 1.03200i
\(612\) 0 0
\(613\) −2.25736 + 3.90986i −0.0911739 + 0.157918i −0.908005 0.418959i \(-0.862395\pi\)
0.816831 + 0.576876i \(0.195729\pi\)
\(614\) 0 0
\(615\) 5.17157 0.208538
\(616\) 0 0
\(617\) 19.1127 0.769448 0.384724 0.923032i \(-0.374297\pi\)
0.384724 + 0.923032i \(0.374297\pi\)
\(618\) 0 0
\(619\) 8.96447 15.5269i 0.360312 0.624079i −0.627700 0.778455i \(-0.716003\pi\)
0.988012 + 0.154376i \(0.0493368\pi\)
\(620\) 0 0
\(621\) −6.32843 10.9612i −0.253951 0.439856i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 6.98528 + 12.0989i 0.279411 + 0.483954i
\(626\) 0 0
\(627\) −3.20711 + 5.55487i −0.128080 + 0.221840i
\(628\) 0 0
\(629\) 1.48528 0.0592220
\(630\) 0 0
\(631\) 29.6569 1.18062 0.590310 0.807176i \(-0.299005\pi\)
0.590310 + 0.807176i \(0.299005\pi\)
\(632\) 0 0
\(633\) 2.48528 4.30463i 0.0987811 0.171094i
\(634\) 0 0
\(635\) 5.17157 + 8.95743i 0.205228 + 0.355465i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 19.3137 + 33.4523i 0.764038 + 1.32335i
\(640\) 0 0
\(641\) 8.50000 14.7224i 0.335730 0.581501i −0.647895 0.761730i \(-0.724350\pi\)
0.983625 + 0.180229i \(0.0576838\pi\)
\(642\) 0 0
\(643\) −11.0294 −0.434959 −0.217479 0.976065i \(-0.569783\pi\)
−0.217479 + 0.976065i \(0.569783\pi\)
\(644\) 0 0
\(645\) 7.31371 0.287977
\(646\) 0 0
\(647\) 13.9350 24.1362i 0.547843 0.948891i −0.450580 0.892736i \(-0.648783\pi\)
0.998422 0.0561548i \(-0.0178840\pi\)
\(648\) 0 0
\(649\) −13.1569 22.7883i −0.516452 0.894521i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 19.4706 + 33.7240i 0.761942 + 1.31972i 0.941848 + 0.336038i \(0.109087\pi\)
−0.179906 + 0.983684i \(0.557579\pi\)
\(654\) 0 0
\(655\) 7.06497 12.2369i 0.276051 0.478135i
\(656\) 0 0
\(657\) −41.4558 −1.61735
\(658\) 0 0
\(659\) 34.6274 1.34889 0.674446 0.738324i \(-0.264382\pi\)
0.674446 + 0.738324i \(0.264382\pi\)
\(660\) 0 0
\(661\) −15.3284 + 26.5496i −0.596207 + 1.03266i 0.397169 + 0.917746i \(0.369993\pi\)
−0.993375 + 0.114915i \(0.963341\pi\)
\(662\) 0 0
\(663\) 0.100505 + 0.174080i 0.00390329 + 0.00676070i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −7.41421 12.8418i −0.287079 0.497236i
\(668\) 0 0
\(669\) 0.485281 0.840532i 0.0187621 0.0324968i
\(670\) 0 0
\(671\) 20.8995 0.806816
\(672\) 0 0
\(673\) −2.14214 −0.0825733 −0.0412866 0.999147i \(-0.513146\pi\)
−0.0412866 + 0.999147i \(0.513146\pi\)
\(674\) 0 0
\(675\) −2.00000 + 3.46410i −0.0769800 + 0.133333i
\(676\) 0 0
\(677\) −9.39949 16.2804i −0.361252 0.625707i 0.626915 0.779087i \(-0.284317\pi\)
−0.988167 + 0.153381i \(0.950984\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −3.32843 5.76500i −0.127546 0.220915i
\(682\) 0 0
\(683\) 8.72183 15.1066i 0.333731 0.578040i −0.649509 0.760354i \(-0.725025\pi\)
0.983240 + 0.182314i \(0.0583588\pi\)
\(684\) 0 0
\(685\) 20.3726 0.778396
\(686\) 0 0
\(687\) 1.72792 0.0659243
\(688\) 0 0
\(689\) −1.41421 + 2.44949i −0.0538772 + 0.0933181i
\(690\) 0 0
\(691\) 13.5208 + 23.4187i 0.514356 + 0.890891i 0.999861 + 0.0166570i \(0.00530235\pi\)
−0.485505 + 0.874234i \(0.661364\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 14.0000 + 24.2487i 0.531050 + 0.919806i
\(696\) 0 0
\(697\) −0.585786 + 1.01461i −0.0221882 + 0.0384312i
\(698\) 0 0
\(699\) 0.899495 0.0340220
\(700\) 0 0
\(701\) 14.0000 0.528773 0.264386 0.964417i \(-0.414831\pi\)
0.264386 + 0.964417i \(0.414831\pi\)
\(702\) 0 0
\(703\) 27.7635 48.0877i 1.04712 1.81366i
\(704\) 0 0
\(705\) 3.94365 + 6.83060i 0.148526 + 0.257255i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 18.2990 + 31.6948i 0.687233 + 1.19032i 0.972729 + 0.231943i \(0.0745082\pi\)
−0.285496 + 0.958380i \(0.592158\pi\)
\(710\) 0 0
\(711\) 8.58579 14.8710i 0.321992 0.557707i
\(712\) 0 0
\(713\) 29.2843 1.09670
\(714\) 0 0
\(715\) 12.4853 0.466923
\(716\) 0 0
\(717\) −0.272078 + 0.471253i −0.0101609 + 0.0175993i
\(718\) 0 0
\(719\) 15.5208 + 26.8828i 0.578829 + 1.00256i 0.995614 + 0.0935558i \(0.0298234\pi\)
−0.416785 + 0.909005i \(0.636843\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 2.13604 + 3.69973i 0.0794401 + 0.137594i
\(724\) 0 0
\(725\) −2.34315 + 4.05845i −0.0870222 + 0.150727i
\(726\) 0 0
\(727\) −34.3431 −1.27372 −0.636858 0.770981i \(-0.719766\pi\)
−0.636858 + 0.770981i \(0.719766\pi\)
\(728\) 0 0
\(729\) −18.1716 −0.673021
\(730\) 0 0
\(731\) −0.828427 + 1.43488i −0.0306405 + 0.0530709i
\(732\) 0 0
\(733\) 11.8431 + 20.5129i 0.437437 + 0.757662i 0.997491 0.0707935i \(-0.0225531\pi\)
−0.560054 + 0.828456i \(0.689220\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −3.32843 5.76500i −0.122604 0.212357i
\(738\) 0 0
\(739\) 3.34924 5.80106i 0.123204 0.213395i −0.797826 0.602888i \(-0.794016\pi\)
0.921029 + 0.389493i \(0.127350\pi\)
\(740\) 0 0
\(741\) 7.51472 0.276060
\(742\) 0 0
\(743\) 26.3431 0.966436 0.483218 0.875500i \(-0.339468\pi\)
0.483218 + 0.875500i \(0.339468\pi\)
\(744\) 0 0
\(745\) −5.64214 + 9.77247i −0.206712 + 0.358035i
\(746\) 0 0
\(747\) 10.3431 + 17.9149i 0.378436 + 0.655470i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −10.8640 18.8169i −0.396432 0.686640i 0.596851 0.802352i \(-0.296418\pi\)
−0.993283 + 0.115712i \(0.963085\pi\)
\(752\) 0 0
\(753\) −6.41421 + 11.1097i −0.233747 + 0.404862i
\(754\) 0 0
\(755\) 1.64466 0.0598553
\(756\) 0 0
\(757\) −6.14214 −0.223240 −0.111620 0.993751i \(-0.535604\pi\)
−0.111620 + 0.993751i \(0.535604\pi\)
\(758\) 0 0
\(759\) −2.62132 + 4.54026i −0.0951479 + 0.164801i
\(760\) 0 0
\(761\) −21.0563 36.4707i −0.763292 1.32206i −0.941145 0.338004i \(-0.890248\pi\)
0.177853 0.984057i \(-0.443085\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0.443651 + 0.768426i 0.0160402 + 0.0277825i
\(766\) 0 0
\(767\) −15.4142 + 26.6982i −0.556575 + 0.964016i
\(768\) 0 0
\(769\) −13.8579 −0.499727 −0.249864 0.968281i \(-0.580386\pi\)
−0.249864 + 0.968281i \(0.580386\pi\)
\(770\) 0 0
\(771\) −1.87006 −0.0673485
\(772\) 0 0
\(773\) −4.57107 + 7.91732i −0.164410 + 0.284766i −0.936446 0.350813i \(-0.885905\pi\)
0.772036 + 0.635579i \(0.219239\pi\)
\(774\) 0 0
\(775\) −4.62742 8.01492i −0.166222 0.287904i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 21.8995 + 37.9310i 0.784631 + 1.35902i
\(780\) 0 0
\(781\) 16.4853 28.5533i 0.589890 1.02172i
\(782\) 0 0
\(783\) 6.82843 0.244028
\(784\) 0 0
\(785\) −17.0833 −0.609728
\(786\) 0 0
\(787\) 23.1066 40.0218i 0.823661 1.42662i −0.0792766 0.996853i \(-0.525261\pi\)
0.902938 0.429771i \(-0.141406\pi\)
\(788\) 0 0
\(789\) −2.25736 3.90986i −0.0803641 0.139195i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −12.2426 21.2049i −0.434749 0.753007i
\(794\) 0 0
\(795\) 0.378680 0.655892i 0.0134304 0.0232621i
\(796\) 0 0
\(797\) −47.1127 −1.66882 −0.834409 0.551146i \(-0.814191\pi\)
−0.834409 + 0.551146i \(0.814191\pi\)
\(798\) 0 0
\(799\) −1.78680 −0.0632123
\(800\) 0 0
\(801\) 12.7279 22.0454i 0.449719 0.778936i
\(802\) 0 0
\(803\) 17.6924 + 30.6441i 0.624351 + 1.08141i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 2.62132 + 4.54026i 0.0922748 + 0.159825i
\(808\) 0 0
\(809\) 8.98528 15.5630i 0.315906 0.547165i −0.663724 0.747978i \(-0.731025\pi\)
0.979630 + 0.200813i \(0.0643584\pi\)
\(810\) 0 0
\(811\) 17.6569 0.620016 0.310008 0.950734i \(-0.399668\pi\)
0.310008 + 0.950734i \(0.399668\pi\)
\(812\) 0 0
\(813\) 12.5147 0.438910
\(814\) 0 0
\(815\) −6.17767 + 10.7000i −0.216394 + 0.374806i
\(816\) 0 0
\(817\) 30.9706 + 53.6426i 1.08352 + 1.87672i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −7.57107 13.1135i −0.264232 0.457663i 0.703130 0.711061i \(-0.251785\pi\)
−0.967362 + 0.253398i \(0.918452\pi\)
\(822\) 0 0
\(823\) 24.0061 41.5798i 0.836800 1.44938i −0.0557566 0.998444i \(-0.517757\pi\)
0.892556 0.450936i \(-0.148910\pi\)
\(824\) 0 0
\(825\) 1.65685 0.0576843
\(826\) 0 0
\(827\) 41.6569 1.44855 0.724275 0.689511i \(-0.242174\pi\)
0.724275 + 0.689511i \(0.242174\pi\)
\(828\) 0 0
\(829\) 0.600505 1.04011i 0.0208564 0.0361243i −0.855409 0.517953i \(-0.826694\pi\)
0.876265 + 0.481829i \(0.160027\pi\)
\(830\) 0 0
\(831\) −2.13604 3.69973i −0.0740984 0.128342i
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 1.82843 + 3.16693i 0.0632753 + 0.109596i
\(836\) 0 0
\(837\) −6.74264 + 11.6786i −0.233060 + 0.403671i
\(838\) 0 0
\(839\) 3.31371 0.114402 0.0572010 0.998363i \(-0.481782\pi\)
0.0572010 + 0.998363i \(0.481782\pi\)
\(840\) 0 0
\(841\) −21.0000 −0.724138
\(842\) 0 0
\(843\) 2.58579 4.47871i 0.0890592 0.154255i
\(844\) 0 0
\(845\) 4.57107 + 7.91732i 0.157250 + 0.272364i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 1.15685 + 2.00373i 0.0397031 + 0.0687678i
\(850\) 0 0
\(851\) 22.6924 39.3044i 0.777885 1.34734i
\(852\) 0 0
\(853\) 40.4853 1.38619 0.693095 0.720846i \(-0.256247\pi\)
0.693095 + 0.720846i \(0.256247\pi\)
\(854\) 0 0
\(855\) 33.1716 1.13444
\(856\) 0 0
\(857\) 12.6716 21.9478i 0.432853 0.749723i −0.564265 0.825594i \(-0.690840\pi\)
0.997118 + 0.0758709i \(0.0241737\pi\)
\(858\) 0 0
\(859\) 2.72183 + 4.71434i 0.0928675 + 0.160851i 0.908717 0.417414i \(-0.137063\pi\)
−0.815849 + 0.578265i \(0.803730\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −16.6924 28.9121i −0.568216 0.984178i −0.996743 0.0806492i \(-0.974301\pi\)
0.428527 0.903529i \(-0.359033\pi\)
\(864\) 0 0
\(865\) 10.0563 17.4181i 0.341926 0.592233i
\(866\) 0 0
\(867\) −7.02944 −0.238732
\(868\) 0 0
\(869\) −14.6569 −0.497200
\(870\) 0 0
\(871\) −3.89949 + 6.75412i −0.132129 + 0.228855i
\(872\) 0 0
\(873\) 1.65685 + 2.86976i 0.0560760 + 0.0971265i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −25.7132 44.5366i −0.868273 1.50389i −0.863760 0.503903i \(-0.831897\pi\)
−0.00451320 0.999990i \(-0.501437\pi\)
\(878\) 0 0
\(879\) 5.92893 10.2692i 0.199978 0.346372i
\(880\) 0 0
\(881\) 26.0000 0.875962 0.437981 0.898984i \(-0.355694\pi\)
0.437981 + 0.898984i \(0.355694\pi\)
\(882\) 0 0
\(883\) −41.2548 −1.38834 −0.694168 0.719813i \(-0.744227\pi\)
−0.694168 + 0.719813i \(0.744227\pi\)
\(884\) 0 0
\(885\) 4.12742 7.14890i 0.138742 0.240308i
\(886\) 0 0
\(887\) 15.5503 + 26.9338i 0.522126 + 0.904349i 0.999669 + 0.0257406i \(0.00819441\pi\)
−0.477542 + 0.878609i \(0.658472\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 9.03553 + 15.6500i 0.302702 + 0.524295i
\(892\) 0 0
\(893\) −33.3995 + 57.8496i −1.11767 + 1.93586i
\(894\) 0 0
\(895\) 10.2132 0.341390
\(896\) 0 0
\(897\) 6.14214 0.205080
\(898\) 0 0
\(899\) −7.89949 + 13.6823i −0.263463 + 0.456331i
\(900\) 0 0
\(901\) 0.0857864 + 0.148586i 0.00285796 + 0.00495013i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −8.51472 14.7479i −0.283039 0.490238i
\(906\) 0 0
\(907\) −12.7635 + 22.1070i −0.423804 + 0.734049i −0.996308 0.0858524i \(-0.972639\pi\)
0.572504 + 0.819902i \(0.305972\pi\)
\(908\) 0 0
\(909\) 38.1421 1.26509
\(910\) 0 0
\(911\) 8.00000 0.265052 0.132526 0.991180i \(-0.457691\pi\)
0.132526 + 0.991180i \(0.457691\pi\)
\(912\) 0 0
\(913\) 8.82843 15.2913i 0.292178 0.506068i
\(914\) 0 0
\(915\) 3.27817 + 5.67796i 0.108373 + 0.187708i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 3.27817 + 5.67796i 0.108137 + 0.187299i 0.915016 0.403419i \(-0.132178\pi\)
−0.806879 + 0.590717i \(0.798845\pi\)
\(920\) 0 0
\(921\) 2.97056 5.14517i 0.0978834 0.169539i
\(922\) 0 0
\(923\) −38.6274 −1.27144
\(924\) 0 0
\(925\) −14.3431 −0.471600
\(926\) 0 0
\(927\) −11.8995 + 20.6105i −0.390831 + 0.676939i
\(928\) 0 0
\(929\) −9.67157 16.7517i −0.317314 0.549604i 0.662613 0.748962i \(-0.269448\pi\)
−0.979927 + 0.199358i \(0.936114\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) −3.88478 6.72863i −0.127182 0.220285i
\(934\) 0 0
\(935\) 0.378680 0.655892i 0.0123841 0.0214500i
\(936\) 0 0
\(937\) −16.6274 −0.543194 −0.271597 0.962411i \(-0.587552\pi\)
−0.271597 + 0.962411i \(0.587552\pi\)
\(938\) 0 0
\(939\) 12.1299 0.395846
\(940\) 0 0
\(941\) −19.1274 + 33.1297i −0.623536 + 1.08000i 0.365286 + 0.930895i \(0.380971\pi\)
−0.988822 + 0.149101i \(0.952362\pi\)
\(942\) 0 0
\(943\) 17.8995 + 31.0028i 0.582888 + 1.00959i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 9.10660 + 15.7731i 0.295925 + 0.512557i 0.975200 0.221327i \(-0.0710389\pi\)
−0.679275 + 0.733884i \(0.737706\pi\)
\(948\) 0 0
\(949\) 20.7279 35.9018i 0.672857 1.16542i
\(950\) 0 0
\(951\) −4.01219 −0.130104
\(952\) 0 0
\(953\) −27.1127 −0.878266 −0.439133 0.898422i \(-0.644714\pi\)
−0.439133 + 0.898422i \(0.644714\pi\)
\(954\) 0 0
\(955\) 8.13604 14.0920i 0.263276 0.456007i
\(956\) 0 0
\(957\) −1.41421 2.44949i −0.0457150 0.0791808i
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −0.100505 0.174080i −0.00324210 0.00561548i
\(962\) 0 0
\(963\) −18.2426 + 31.5972i −0.587861 + 1.01820i
\(964\) 0 0
\(965\) −16.7157 −0.538098
\(966\) 0 0
\(967\) −18.3431 −0.589876 −0.294938 0.955516i \(-0.595299\pi\)
−0.294938 + 0.955516i \(0.595299\pi\)
\(968\) 0 0
\(969\) 0.227922 0.394773i 0.00732191 0.0126819i
\(970\) 0 0
\(971\) −17.7929 30.8182i −0.571001 0.989003i −0.996463 0.0840268i \(-0.973222\pi\)
0.425462 0.904976i \(-0.360111\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) −0.970563 1.68106i −0.0310829 0.0538371i
\(976\) 0 0
\(977\) 17.2574 29.8906i 0.552112 0.956286i −0.446010 0.895028i \(-0.647155\pi\)
0.998122 0.0612578i \(-0.0195112\pi\)
\(978\) 0 0
\(979\) −21.7279 −0.694427
\(980\) 0 0
\(981\) 23.1127 0.737932
\(982\) 0 0
\(983\) 13.4203 23.2447i 0.428041 0.741389i −0.568658 0.822574i \(-0.692537\pi\)
0.996699 + 0.0811848i \(0.0258704\pi\)
\(984\) 0 0
\(985\) 17.2132 + 29.8141i 0.548458 + 0.949958i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 25.3137 + 43.8446i 0.804929 + 1.39418i
\(990\) 0 0
\(991\) 22.3492 38.7100i 0.709947 1.22966i −0.254929 0.966960i \(-0.582052\pi\)
0.964876 0.262705i \(-0.0846145\pi\)
\(992\) 0 0
\(993\) 11.7696 0.373495
\(994\) 0 0
\(995\) −20.5563 −0.651680
\(996\) 0 0
\(997\) −22.6421 + 39.2173i −0.717084 + 1.24203i 0.245067 + 0.969506i \(0.421190\pi\)
−0.962150 + 0.272519i \(0.912143\pi\)
\(998\) 0 0
\(999\) 10.4497 + 18.0995i 0.330615 + 0.572643i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1568.2.i.x.1537.1 4
4.3 odd 2 1568.2.i.o.1537.2 4
7.2 even 3 inner 1568.2.i.x.961.1 4
7.3 odd 6 1568.2.a.w.1.1 2
7.4 even 3 1568.2.a.j.1.2 2
7.5 odd 6 224.2.i.a.65.2 4
7.6 odd 2 224.2.i.a.193.2 yes 4
21.5 even 6 2016.2.s.q.289.1 4
21.20 even 2 2016.2.s.q.865.1 4
28.3 even 6 1568.2.a.l.1.2 2
28.11 odd 6 1568.2.a.u.1.1 2
28.19 even 6 224.2.i.d.65.1 yes 4
28.23 odd 6 1568.2.i.o.961.2 4
28.27 even 2 224.2.i.d.193.1 yes 4
56.3 even 6 3136.2.a.bw.1.1 2
56.5 odd 6 448.2.i.j.65.1 4
56.11 odd 6 3136.2.a.be.1.2 2
56.13 odd 2 448.2.i.j.193.1 4
56.19 even 6 448.2.i.g.65.2 4
56.27 even 2 448.2.i.g.193.2 4
56.45 odd 6 3136.2.a.bd.1.2 2
56.53 even 6 3136.2.a.bx.1.1 2
84.47 odd 6 2016.2.s.s.289.1 4
84.83 odd 2 2016.2.s.s.865.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
224.2.i.a.65.2 4 7.5 odd 6
224.2.i.a.193.2 yes 4 7.6 odd 2
224.2.i.d.65.1 yes 4 28.19 even 6
224.2.i.d.193.1 yes 4 28.27 even 2
448.2.i.g.65.2 4 56.19 even 6
448.2.i.g.193.2 4 56.27 even 2
448.2.i.j.65.1 4 56.5 odd 6
448.2.i.j.193.1 4 56.13 odd 2
1568.2.a.j.1.2 2 7.4 even 3
1568.2.a.l.1.2 2 28.3 even 6
1568.2.a.u.1.1 2 28.11 odd 6
1568.2.a.w.1.1 2 7.3 odd 6
1568.2.i.o.961.2 4 28.23 odd 6
1568.2.i.o.1537.2 4 4.3 odd 2
1568.2.i.x.961.1 4 7.2 even 3 inner
1568.2.i.x.1537.1 4 1.1 even 1 trivial
2016.2.s.q.289.1 4 21.5 even 6
2016.2.s.q.865.1 4 21.20 even 2
2016.2.s.s.289.1 4 84.47 odd 6
2016.2.s.s.865.1 4 84.83 odd 2
3136.2.a.bd.1.2 2 56.45 odd 6
3136.2.a.be.1.2 2 56.11 odd 6
3136.2.a.bw.1.1 2 56.3 even 6
3136.2.a.bx.1.1 2 56.53 even 6