Properties

Label 2-153-153.7-c2-0-32
Degree $2$
Conductor $153$
Sign $-0.916 + 0.399i$
Analytic cond. $4.16894$
Root an. cond. $2.04180$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.434 − 0.565i)2-s + (1.99 − 2.23i)3-s + (0.903 − 3.37i)4-s + (−4.79 + 4.20i)5-s + (−2.13 − 0.156i)6-s + (−7.75 − 6.79i)7-s + (−4.93 + 2.04i)8-s + (−1.03 − 8.94i)9-s + (4.46 + 0.887i)10-s + (0.196 + 2.99i)11-s + (−5.75 − 8.75i)12-s + (2.50 + 0.671i)13-s + (−0.480 + 7.33i)14-s + (−0.152 + 19.1i)15-s + (−8.79 − 5.07i)16-s + (15.4 − 7.19i)17-s + ⋯
L(s)  = 1  + (−0.217 − 0.282i)2-s + (0.665 − 0.746i)3-s + (0.225 − 0.843i)4-s + (−0.959 + 0.841i)5-s + (−0.355 − 0.0261i)6-s + (−1.10 − 0.971i)7-s + (−0.616 + 0.255i)8-s + (−0.114 − 0.993i)9-s + (0.446 + 0.0887i)10-s + (0.0178 + 0.272i)11-s + (−0.479 − 0.729i)12-s + (0.192 + 0.0516i)13-s + (−0.0343 + 0.524i)14-s + (−0.0101 + 1.27i)15-s + (−0.549 − 0.317i)16-s + (0.906 − 0.423i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 153 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.916 + 0.399i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 153 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.916 + 0.399i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(153\)    =    \(3^{2} \cdot 17\)
Sign: $-0.916 + 0.399i$
Analytic conductor: \(4.16894\)
Root analytic conductor: \(2.04180\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{153} (7, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 153,\ (\ :1),\ -0.916 + 0.399i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.205124 - 0.983808i\)
\(L(\frac12)\) \(\approx\) \(0.205124 - 0.983808i\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (-1.99 + 2.23i)T \)
17 \( 1 + (-15.4 + 7.19i)T \)
good2 \( 1 + (0.434 + 0.565i)T + (-1.03 + 3.86i)T^{2} \)
5 \( 1 + (4.79 - 4.20i)T + (3.26 - 24.7i)T^{2} \)
7 \( 1 + (7.75 + 6.79i)T + (6.39 + 48.5i)T^{2} \)
11 \( 1 + (-0.196 - 2.99i)T + (-119. + 15.7i)T^{2} \)
13 \( 1 + (-2.50 - 0.671i)T + (146. + 84.5i)T^{2} \)
19 \( 1 + (1.04 - 2.51i)T + (-255. - 255. i)T^{2} \)
23 \( 1 + (-5.65 + 11.4i)T + (-322. - 419. i)T^{2} \)
29 \( 1 + (-10.1 + 30.0i)T + (-667. - 511. i)T^{2} \)
31 \( 1 + (-3.41 + 52.0i)T + (-952. - 125. i)T^{2} \)
37 \( 1 + (13.1 - 19.7i)T + (-523. - 1.26e3i)T^{2} \)
41 \( 1 + (21.8 - 7.43i)T + (1.33e3 - 1.02e3i)T^{2} \)
43 \( 1 + (-75.9 - 9.99i)T + (1.78e3 + 478. i)T^{2} \)
47 \( 1 + (7.83 + 29.2i)T + (-1.91e3 + 1.10e3i)T^{2} \)
53 \( 1 + (29.0 - 70.0i)T + (-1.98e3 - 1.98e3i)T^{2} \)
59 \( 1 + (-65.2 - 50.0i)T + (900. + 3.36e3i)T^{2} \)
61 \( 1 + (-43.9 + 50.1i)T + (-485. - 3.68e3i)T^{2} \)
67 \( 1 + (-101. + 58.6i)T + (2.24e3 - 3.88e3i)T^{2} \)
71 \( 1 + (-8.17 + 12.2i)T + (-1.92e3 - 4.65e3i)T^{2} \)
73 \( 1 + (11.5 + 58.1i)T + (-4.92e3 + 2.03e3i)T^{2} \)
79 \( 1 + (7.05 + 107. i)T + (-6.18e3 + 814. i)T^{2} \)
83 \( 1 + (117. - 90.0i)T + (1.78e3 - 6.65e3i)T^{2} \)
89 \( 1 + (-2.00 - 2.00i)T + 7.92e3iT^{2} \)
97 \( 1 + (44.6 - 131. i)T + (-7.46e3 - 5.72e3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.21749828131782553337471115713, −11.28920687669057934012472022093, −10.20227274033898128971456290336, −9.451035630127573967026352666551, −7.87830675366955666043900444477, −7.02243175721720705319508280638, −6.20375014018738724616200394376, −3.86375441808366191244334010898, −2.70854666706157468232942352953, −0.62871567515933196323902974505, 3.01284647699897709689492426313, 3.84163502455684529947555628850, 5.42953023846719337323519464705, 7.08505213047324947815554600930, 8.423702113350345588624254712058, 8.688124485274242227639613577632, 9.790755737599356795240617831585, 11.27712065429242123029895539987, 12.46256765164354669749971872769, 12.77248076662307098212084423793

Graph of the $Z$-function along the critical line