Properties

Label 2-153-153.22-c2-0-5
Degree $2$
Conductor $153$
Sign $-0.916 - 0.399i$
Analytic cond. $4.16894$
Root an. cond. $2.04180$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.434 + 0.565i)2-s + (1.99 + 2.23i)3-s + (0.903 + 3.37i)4-s + (−4.79 − 4.20i)5-s + (−2.13 + 0.156i)6-s + (−7.75 + 6.79i)7-s + (−4.93 − 2.04i)8-s + (−1.03 + 8.94i)9-s + (4.46 − 0.887i)10-s + (0.196 − 2.99i)11-s + (−5.75 + 8.75i)12-s + (2.50 − 0.671i)13-s + (−0.480 − 7.33i)14-s + (−0.152 − 19.1i)15-s + (−8.79 + 5.07i)16-s + (15.4 + 7.19i)17-s + ⋯
L(s)  = 1  + (−0.217 + 0.282i)2-s + (0.665 + 0.746i)3-s + (0.225 + 0.843i)4-s + (−0.959 − 0.841i)5-s + (−0.355 + 0.0261i)6-s + (−1.10 + 0.971i)7-s + (−0.616 − 0.255i)8-s + (−0.114 + 0.993i)9-s + (0.446 − 0.0887i)10-s + (0.0178 − 0.272i)11-s + (−0.479 + 0.729i)12-s + (0.192 − 0.0516i)13-s + (−0.0343 − 0.524i)14-s + (−0.0101 − 1.27i)15-s + (−0.549 + 0.317i)16-s + (0.906 + 0.423i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 153 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.916 - 0.399i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 153 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.916 - 0.399i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(153\)    =    \(3^{2} \cdot 17\)
Sign: $-0.916 - 0.399i$
Analytic conductor: \(4.16894\)
Root analytic conductor: \(2.04180\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{153} (22, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 153,\ (\ :1),\ -0.916 - 0.399i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.205124 + 0.983808i\)
\(L(\frac12)\) \(\approx\) \(0.205124 + 0.983808i\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (-1.99 - 2.23i)T \)
17 \( 1 + (-15.4 - 7.19i)T \)
good2 \( 1 + (0.434 - 0.565i)T + (-1.03 - 3.86i)T^{2} \)
5 \( 1 + (4.79 + 4.20i)T + (3.26 + 24.7i)T^{2} \)
7 \( 1 + (7.75 - 6.79i)T + (6.39 - 48.5i)T^{2} \)
11 \( 1 + (-0.196 + 2.99i)T + (-119. - 15.7i)T^{2} \)
13 \( 1 + (-2.50 + 0.671i)T + (146. - 84.5i)T^{2} \)
19 \( 1 + (1.04 + 2.51i)T + (-255. + 255. i)T^{2} \)
23 \( 1 + (-5.65 - 11.4i)T + (-322. + 419. i)T^{2} \)
29 \( 1 + (-10.1 - 30.0i)T + (-667. + 511. i)T^{2} \)
31 \( 1 + (-3.41 - 52.0i)T + (-952. + 125. i)T^{2} \)
37 \( 1 + (13.1 + 19.7i)T + (-523. + 1.26e3i)T^{2} \)
41 \( 1 + (21.8 + 7.43i)T + (1.33e3 + 1.02e3i)T^{2} \)
43 \( 1 + (-75.9 + 9.99i)T + (1.78e3 - 478. i)T^{2} \)
47 \( 1 + (7.83 - 29.2i)T + (-1.91e3 - 1.10e3i)T^{2} \)
53 \( 1 + (29.0 + 70.0i)T + (-1.98e3 + 1.98e3i)T^{2} \)
59 \( 1 + (-65.2 + 50.0i)T + (900. - 3.36e3i)T^{2} \)
61 \( 1 + (-43.9 - 50.1i)T + (-485. + 3.68e3i)T^{2} \)
67 \( 1 + (-101. - 58.6i)T + (2.24e3 + 3.88e3i)T^{2} \)
71 \( 1 + (-8.17 - 12.2i)T + (-1.92e3 + 4.65e3i)T^{2} \)
73 \( 1 + (11.5 - 58.1i)T + (-4.92e3 - 2.03e3i)T^{2} \)
79 \( 1 + (7.05 - 107. i)T + (-6.18e3 - 814. i)T^{2} \)
83 \( 1 + (117. + 90.0i)T + (1.78e3 + 6.65e3i)T^{2} \)
89 \( 1 + (-2.00 + 2.00i)T - 7.92e3iT^{2} \)
97 \( 1 + (44.6 + 131. i)T + (-7.46e3 + 5.72e3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.77248076662307098212084423793, −12.46256765164354669749971872769, −11.27712065429242123029895539987, −9.790755737599356795240617831585, −8.688124485274242227639613577632, −8.423702113350345588624254712058, −7.08505213047324947815554600930, −5.42953023846719337323519464705, −3.84163502455684529947555628850, −3.01284647699897709689492426313, 0.62871567515933196323902974505, 2.70854666706157468232942352953, 3.86375441808366191244334010898, 6.20375014018738724616200394376, 7.02243175721720705319508280638, 7.87830675366955666043900444477, 9.451035630127573967026352666551, 10.20227274033898128971456290336, 11.28920687669057934012472022093, 12.21749828131782553337471115713

Graph of the $Z$-function along the critical line