Properties

Label 2-152-1.1-c5-0-20
Degree $2$
Conductor $152$
Sign $-1$
Analytic cond. $24.3783$
Root an. cond. $4.93744$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 6.12·3-s + 59.9·5-s − 44.7·7-s − 205.·9-s − 774.·11-s − 629.·13-s + 367.·15-s + 1.62e3·17-s − 361·19-s − 274.·21-s − 746.·23-s + 469.·25-s − 2.74e3·27-s − 5.39e3·29-s + 2.23e3·31-s − 4.74e3·33-s − 2.68e3·35-s + 1.28e4·37-s − 3.85e3·39-s − 1.60e4·41-s − 2.06e4·43-s − 1.23e4·45-s + 1.11e4·47-s − 1.48e4·49-s + 9.96e3·51-s + 1.40e4·53-s − 4.64e4·55-s + ⋯
L(s)  = 1  + 0.393·3-s + 1.07·5-s − 0.344·7-s − 0.845·9-s − 1.93·11-s − 1.03·13-s + 0.421·15-s + 1.36·17-s − 0.229·19-s − 0.135·21-s − 0.294·23-s + 0.150·25-s − 0.725·27-s − 1.19·29-s + 0.417·31-s − 0.758·33-s − 0.369·35-s + 1.54·37-s − 0.405·39-s − 1.48·41-s − 1.70·43-s − 0.906·45-s + 0.736·47-s − 0.880·49-s + 0.536·51-s + 0.686·53-s − 2.07·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 152 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 152 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(152\)    =    \(2^{3} \cdot 19\)
Sign: $-1$
Analytic conductor: \(24.3783\)
Root analytic conductor: \(4.93744\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 152,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
19 \( 1 + 361T \)
good3 \( 1 - 6.12T + 243T^{2} \)
5 \( 1 - 59.9T + 3.12e3T^{2} \)
7 \( 1 + 44.7T + 1.68e4T^{2} \)
11 \( 1 + 774.T + 1.61e5T^{2} \)
13 \( 1 + 629.T + 3.71e5T^{2} \)
17 \( 1 - 1.62e3T + 1.41e6T^{2} \)
23 \( 1 + 746.T + 6.43e6T^{2} \)
29 \( 1 + 5.39e3T + 2.05e7T^{2} \)
31 \( 1 - 2.23e3T + 2.86e7T^{2} \)
37 \( 1 - 1.28e4T + 6.93e7T^{2} \)
41 \( 1 + 1.60e4T + 1.15e8T^{2} \)
43 \( 1 + 2.06e4T + 1.47e8T^{2} \)
47 \( 1 - 1.11e4T + 2.29e8T^{2} \)
53 \( 1 - 1.40e4T + 4.18e8T^{2} \)
59 \( 1 - 1.30e4T + 7.14e8T^{2} \)
61 \( 1 - 3.41e4T + 8.44e8T^{2} \)
67 \( 1 + 2.20e4T + 1.35e9T^{2} \)
71 \( 1 + 7.07e4T + 1.80e9T^{2} \)
73 \( 1 - 7.04e4T + 2.07e9T^{2} \)
79 \( 1 + 7.68e4T + 3.07e9T^{2} \)
83 \( 1 + 7.67e4T + 3.93e9T^{2} \)
89 \( 1 + 5.68e4T + 5.58e9T^{2} \)
97 \( 1 - 9.14e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.59826719184686997731404386317, −10.14327558185593094648387758102, −9.820977888484780787669258554874, −8.396192366002420537485458046614, −7.47775634294480312156469607851, −5.86422046643037772244462268677, −5.18163226656818785354470659015, −3.08286810983575809321366436243, −2.17593143770389040882512909095, 0, 2.17593143770389040882512909095, 3.08286810983575809321366436243, 5.18163226656818785354470659015, 5.86422046643037772244462268677, 7.47775634294480312156469607851, 8.396192366002420537485458046614, 9.820977888484780787669258554874, 10.14327558185593094648387758102, 11.59826719184686997731404386317

Graph of the $Z$-function along the critical line