Properties

Label 2-1519-1.1-c3-0-241
Degree $2$
Conductor $1519$
Sign $-1$
Analytic cond. $89.6239$
Root an. cond. $9.46699$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.438·2-s + 5.12·3-s − 7.80·4-s + 6.31·5-s − 2.24·6-s + 6.93·8-s − 0.753·9-s − 2.76·10-s − 0.630·11-s − 40·12-s + 9.23·13-s + 32.3·15-s + 59.4·16-s + 58.4·17-s + 0.330·18-s − 1.30·19-s − 49.3·20-s + 0.276·22-s − 106.·23-s + 35.5·24-s − 85.1·25-s − 4.04·26-s − 142.·27-s − 284.·29-s − 14.1·30-s − 31·31-s − 81.5·32-s + ⋯
L(s)  = 1  − 0.155·2-s + 0.985·3-s − 0.975·4-s + 0.564·5-s − 0.152·6-s + 0.306·8-s − 0.0279·9-s − 0.0875·10-s − 0.0172·11-s − 0.962·12-s + 0.196·13-s + 0.556·15-s + 0.928·16-s + 0.834·17-s + 0.00432·18-s − 0.0156·19-s − 0.551·20-s + 0.00267·22-s − 0.963·23-s + 0.301·24-s − 0.680·25-s − 0.0305·26-s − 1.01·27-s − 1.82·29-s − 0.0863·30-s − 0.179·31-s − 0.450·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1519 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1519 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1519\)    =    \(7^{2} \cdot 31\)
Sign: $-1$
Analytic conductor: \(89.6239\)
Root analytic conductor: \(9.46699\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1519,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 \)
31 \( 1 + 31T \)
good2 \( 1 + 0.438T + 8T^{2} \)
3 \( 1 - 5.12T + 27T^{2} \)
5 \( 1 - 6.31T + 125T^{2} \)
11 \( 1 + 0.630T + 1.33e3T^{2} \)
13 \( 1 - 9.23T + 2.19e3T^{2} \)
17 \( 1 - 58.4T + 4.91e3T^{2} \)
19 \( 1 + 1.30T + 6.85e3T^{2} \)
23 \( 1 + 106.T + 1.21e4T^{2} \)
29 \( 1 + 284.T + 2.43e4T^{2} \)
37 \( 1 - 337.T + 5.06e4T^{2} \)
41 \( 1 - 99.7T + 6.89e4T^{2} \)
43 \( 1 - 497.T + 7.95e4T^{2} \)
47 \( 1 + 288.T + 1.03e5T^{2} \)
53 \( 1 + 245.T + 1.48e5T^{2} \)
59 \( 1 - 405.T + 2.05e5T^{2} \)
61 \( 1 + 218.T + 2.26e5T^{2} \)
67 \( 1 + 282.T + 3.00e5T^{2} \)
71 \( 1 + 630.T + 3.57e5T^{2} \)
73 \( 1 - 664.T + 3.89e5T^{2} \)
79 \( 1 + 293.T + 4.93e5T^{2} \)
83 \( 1 + 997.T + 5.71e5T^{2} \)
89 \( 1 + 666.T + 7.04e5T^{2} \)
97 \( 1 + 1.19e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.800889881247225597412283333435, −7.937332373924883591166391060266, −7.57060513039081482788036756564, −5.97041121005991378442694230215, −5.54651320557720090053289992455, −4.24046735495280036284404358503, −3.58449329495688175860940608854, −2.49608443400729120045691065618, −1.42986790643706709243949837051, 0, 1.42986790643706709243949837051, 2.49608443400729120045691065618, 3.58449329495688175860940608854, 4.24046735495280036284404358503, 5.54651320557720090053289992455, 5.97041121005991378442694230215, 7.57060513039081482788036756564, 7.937332373924883591166391060266, 8.800889881247225597412283333435

Graph of the $Z$-function along the critical line