Properties

Label 1519.4.a.b
Level $1519$
Weight $4$
Character orbit 1519.a
Self dual yes
Analytic conductor $89.624$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1519,4,Mod(1,1519)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1519, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1519.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1519 = 7^{2} \cdot 31 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1519.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-5,2,5,25] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(89.6239012987\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{17}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 31)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{17})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta - 2) q^{2} + ( - 2 \beta + 2) q^{3} + 5 \beta q^{4} + (3 \beta + 11) q^{5} + (4 \beta + 4) q^{6} + ( - 7 \beta - 4) q^{8} + ( - 4 \beta - 7) q^{9} + ( - 20 \beta - 34) q^{10} + ( - 6 \beta - 10) q^{11}+ \cdots + (106 \beta + 166) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 5 q^{2} + 2 q^{3} + 5 q^{4} + 25 q^{5} + 12 q^{6} - 15 q^{8} - 18 q^{9} - 88 q^{10} - 26 q^{11} - 80 q^{12} - 64 q^{13} - 26 q^{15} + 57 q^{16} + 84 q^{17} + 79 q^{18} + 51 q^{19} + 190 q^{20} + 116 q^{22}+ \cdots + 438 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.56155
−1.56155
−4.56155 −3.12311 12.8078 18.6847 14.2462 0 −21.9309 −17.2462 −85.2311
1.2 −0.438447 5.12311 −7.80776 6.31534 −2.24621 0 6.93087 −0.753789 −2.76894
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(7\) \( -1 \)
\(31\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1519.4.a.b 2
7.b odd 2 1 31.4.a.a 2
21.c even 2 1 279.4.a.d 2
28.d even 2 1 496.4.a.c 2
35.c odd 2 1 775.4.a.d 2
56.e even 2 1 1984.4.a.e 2
56.h odd 2 1 1984.4.a.f 2
217.d even 2 1 961.4.a.b 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
31.4.a.a 2 7.b odd 2 1
279.4.a.d 2 21.c even 2 1
496.4.a.c 2 28.d even 2 1
775.4.a.d 2 35.c odd 2 1
961.4.a.b 2 217.d even 2 1
1519.4.a.b 2 1.a even 1 1 trivial
1984.4.a.e 2 56.e even 2 1
1984.4.a.f 2 56.h odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1519))\):

\( T_{2}^{2} + 5T_{2} + 2 \) Copy content Toggle raw display
\( T_{3}^{2} - 2T_{3} - 16 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 5T + 2 \) Copy content Toggle raw display
$3$ \( T^{2} - 2T - 16 \) Copy content Toggle raw display
$5$ \( T^{2} - 25T + 118 \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( T^{2} + 26T + 16 \) Copy content Toggle raw display
$13$ \( T^{2} + 64T - 676 \) Copy content Toggle raw display
$17$ \( T^{2} - 84T + 1492 \) Copy content Toggle raw display
$19$ \( T^{2} - 51T - 68 \) Copy content Toggle raw display
$23$ \( T^{2} - 10T - 12368 \) Copy content Toggle raw display
$29$ \( T^{2} + 314T + 8312 \) Copy content Toggle raw display
$31$ \( (T + 31)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} - 32T - 103172 \) Copy content Toggle raw display
$41$ \( T^{2} - 583T + 48214 \) Copy content Toggle raw display
$43$ \( T^{2} - 220T - 138112 \) Copy content Toggle raw display
$47$ \( T^{2} + 512T + 64448 \) Copy content Toggle raw display
$53$ \( T^{2} + 54T - 47024 \) Copy content Toggle raw display
$59$ \( T^{2} - 609T + 82516 \) Copy content Toggle raw display
$61$ \( T^{2} + 372T + 33508 \) Copy content Toggle raw display
$67$ \( T^{2} - 424T - 199856 \) Copy content Toggle raw display
$71$ \( T^{2} + 317T - 197752 \) Copy content Toggle raw display
$73$ \( T^{2} - 1840 T + 781052 \) Copy content Toggle raw display
$79$ \( T^{2} + 1132 T + 246304 \) Copy content Toggle raw display
$83$ \( T^{2} + 1458 T + 459616 \) Copy content Toggle raw display
$89$ \( T^{2} + 418T - 165776 \) Copy content Toggle raw display
$97$ \( T^{2} + 1363 T + 205154 \) Copy content Toggle raw display
show more
show less