L(s) = 1 | + (−0.437 + 1.34i)2-s + (−1.61 − 1.17i)4-s + 0.0549i·5-s − 7-s + (2.28 − 1.66i)8-s + (−0.0738 − 0.0240i)10-s − 2.63i·11-s + 3.67i·13-s + (0.437 − 1.34i)14-s + (1.23 + 3.80i)16-s − 3.16·17-s − 3.07i·19-s + (0.0645 − 0.0888i)20-s + (3.54 + 1.15i)22-s − 2.86·23-s + ⋯ |
L(s) = 1 | + (−0.309 + 0.951i)2-s + (−0.809 − 0.587i)4-s + 0.0245i·5-s − 0.377·7-s + (0.809 − 0.587i)8-s + (−0.0233 − 0.00759i)10-s − 0.794i·11-s + 1.02i·13-s + (0.116 − 0.359i)14-s + (0.309 + 0.951i)16-s − 0.766·17-s − 0.706i·19-s + (0.0144 − 0.0198i)20-s + (0.755 + 0.245i)22-s − 0.598·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1512 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.587 - 0.809i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1512 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.587 - 0.809i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.9622712626\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9622712626\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.437 - 1.34i)T \) |
| 3 | \( 1 \) |
| 7 | \( 1 + T \) |
good | 5 | \( 1 - 0.0549iT - 5T^{2} \) |
| 11 | \( 1 + 2.63iT - 11T^{2} \) |
| 13 | \( 1 - 3.67iT - 13T^{2} \) |
| 17 | \( 1 + 3.16T + 17T^{2} \) |
| 19 | \( 1 + 3.07iT - 19T^{2} \) |
| 23 | \( 1 + 2.86T + 23T^{2} \) |
| 29 | \( 1 - 10.1iT - 29T^{2} \) |
| 31 | \( 1 - 9.32T + 31T^{2} \) |
| 37 | \( 1 + 0.774iT - 37T^{2} \) |
| 41 | \( 1 + 6.36T + 41T^{2} \) |
| 43 | \( 1 - 9.98iT - 43T^{2} \) |
| 47 | \( 1 - 12.3T + 47T^{2} \) |
| 53 | \( 1 + 3.39iT - 53T^{2} \) |
| 59 | \( 1 - 6.93iT - 59T^{2} \) |
| 61 | \( 1 - 8.35iT - 61T^{2} \) |
| 67 | \( 1 - 8.93iT - 67T^{2} \) |
| 71 | \( 1 + 4.28T + 71T^{2} \) |
| 73 | \( 1 - 8.38T + 73T^{2} \) |
| 79 | \( 1 + 3.03T + 79T^{2} \) |
| 83 | \( 1 - 10.3iT - 83T^{2} \) |
| 89 | \( 1 + 12.8T + 89T^{2} \) |
| 97 | \( 1 + 10.1T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.471498827160790507664057851020, −8.796993605027250064616428443910, −8.342738709840562675260596052991, −7.05517806966758805405351833951, −6.72223940089848188851340853836, −5.84867384520662876991251251283, −4.85867835928508413788939144738, −4.08066832386461897621928812083, −2.78307014194898496347404704229, −1.12854742463712650560626280662,
0.49620239928811701615723926511, 2.00732282010450982891365552208, 2.89916159700506457097558231149, 3.97047013862448025112793185121, 4.74133891095232833868209962658, 5.81741984976955957917290179568, 6.88466412955662931189951270763, 7.889456566797553049411127464396, 8.444625445476587149747572191407, 9.406669353958596429892476814765