Properties

Label 1512.2.c.d
Level $1512$
Weight $2$
Character orbit 1512.c
Analytic conductor $12.073$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1512,2,Mod(757,1512)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1512, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1512.757"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1512 = 2^{3} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1512.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.0733807856\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\Q(\zeta_{40})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - x^{12} + x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{8}\cdot 3^{8} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{15}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{11} q^{2} - \beta_1 q^{4} + (\beta_{14} + \beta_{11} + \beta_{10}) q^{5} - q^{7} + ( - \beta_{14} - \beta_{11} + \cdots - \beta_{5}) q^{8} + (\beta_{4} - \beta_{2} - 2) q^{10} + (\beta_{14} + \beta_{10} + \beta_{5}) q^{11}+ \cdots + \beta_{11} q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 8 q^{4} - 16 q^{7} - 20 q^{10} - 16 q^{16} + 20 q^{22} - 32 q^{25} + 8 q^{28} + 40 q^{31} + 40 q^{34} + 40 q^{40} + 4 q^{46} + 16 q^{49} - 40 q^{52} - 72 q^{55} - 32 q^{64} + 20 q^{70} + 24 q^{73}+ \cdots + 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring

\(\beta_{1}\)\(=\) \( 2\zeta_{40}^{4} \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( 2\zeta_{40}^{8} \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( 3\zeta_{40}^{10} \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( \zeta_{40}^{12} + 3\zeta_{40}^{2} \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( \zeta_{40}^{13} + \zeta_{40}^{3} \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( -\zeta_{40}^{15} + \zeta_{40}^{5} \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( -2\zeta_{40}^{12} \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( 3\zeta_{40}^{14} - 3\zeta_{40}^{10} + \zeta_{40}^{8} + 3\zeta_{40}^{6} - 3\zeta_{40}^{2} \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( -3\zeta_{40}^{13} + 3\zeta_{40}^{3} \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( \zeta_{40}^{15} + \zeta_{40}^{11} + 2\zeta_{40}^{5} - \zeta_{40} \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( -\zeta_{40}^{13} + \zeta_{40}^{9} - \zeta_{40}^{7} - \zeta_{40}^{5} + \zeta_{40} \) Copy content Toggle raw display
\(\beta_{12}\)\(=\) \( -3\zeta_{40}^{14} - \zeta_{40}^{12} + \zeta_{40}^{8} + 3\zeta_{40}^{6} \) Copy content Toggle raw display
\(\beta_{13}\)\(=\) \( -2\zeta_{40}^{15} + 3\zeta_{40}^{11} - \zeta_{40}^{5} + 3\zeta_{40} \) Copy content Toggle raw display
\(\beta_{14}\)\(=\) \( \zeta_{40}^{15} - 2\zeta_{40}^{11} - \zeta_{40}^{9} + \zeta_{40}^{7} - \zeta_{40}^{3} + \zeta_{40} \) Copy content Toggle raw display
\(\beta_{15}\)\(=\) \( 2\zeta_{40}^{15} - 3\zeta_{40}^{13} - \zeta_{40}^{11} + 3\zeta_{40}^{9} + 3\zeta_{40}^{7} - 2\zeta_{40}^{5} + 4\zeta_{40} \) Copy content Toggle raw display
\(\zeta_{40}\)\(=\) \( ( 2\beta_{14} + \beta_{13} + 2\beta_{11} + \beta_{10} + \beta_{6} + 2\beta_{5} ) / 6 \) Copy content Toggle raw display
\(\zeta_{40}^{2}\)\(=\) \( ( \beta_{7} + 2\beta_{4} ) / 6 \) Copy content Toggle raw display
\(\zeta_{40}^{3}\)\(=\) \( ( \beta_{9} + 3\beta_{5} ) / 6 \) Copy content Toggle raw display
\(\zeta_{40}^{4}\)\(=\) \( ( \beta_1 ) / 2 \) Copy content Toggle raw display
\(\zeta_{40}^{5}\)\(=\) \( ( \beta_{14} + \beta_{11} + 2\beta_{10} + 3\beta_{6} + \beta_{5} ) / 6 \) Copy content Toggle raw display
\(\zeta_{40}^{6}\)\(=\) \( ( \beta_{12} + \beta_{8} + \beta_{4} + \beta_{3} - \beta_{2} ) / 6 \) Copy content Toggle raw display
\(\zeta_{40}^{7}\)\(=\) \( ( \beta_{15} - \beta_{14} - 4\beta_{11} - \beta_{10} - \beta_{5} ) / 6 \) Copy content Toggle raw display
\(\zeta_{40}^{8}\)\(=\) \( ( \beta_{2} ) / 2 \) Copy content Toggle raw display
\(\zeta_{40}^{9}\)\(=\) \( ( \beta_{15} - 2\beta_{14} - \beta_{13} + \beta_{11} - \beta_{9} + 2\beta_{6} + \beta_{5} ) / 6 \) Copy content Toggle raw display
\(\zeta_{40}^{10}\)\(=\) \( ( \beta_{3} ) / 3 \) Copy content Toggle raw display
\(\zeta_{40}^{11}\)\(=\) \( ( -\beta_{14} + \beta_{13} - \beta_{11} + \beta_{10} - 2\beta_{6} - \beta_{5} ) / 6 \) Copy content Toggle raw display
\(\zeta_{40}^{12}\)\(=\) \( ( -\beta_{7} ) / 2 \) Copy content Toggle raw display
\(\zeta_{40}^{13}\)\(=\) \( ( -\beta_{9} + 3\beta_{5} ) / 6 \) Copy content Toggle raw display
\(\zeta_{40}^{14}\)\(=\) \( ( -\beta_{12} + \beta_{8} + \beta_{7} + \beta_{4} + \beta_{3} ) / 6 \) Copy content Toggle raw display
\(\zeta_{40}^{15}\)\(=\) \( ( \beta_{14} + \beta_{11} + 2\beta_{10} - 3\beta_{6} + \beta_{5} ) / 6 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1512\mathbb{Z}\right)^\times\).

\(n\) \(757\) \(785\) \(1081\) \(1135\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
757.1
0.453990 + 0.891007i
−0.891007 + 0.453990i
−0.891007 0.453990i
0.453990 0.891007i
−0.156434 0.987688i
−0.987688 + 0.156434i
−0.987688 0.156434i
−0.156434 + 0.987688i
0.156434 0.987688i
0.987688 + 0.156434i
0.987688 0.156434i
0.156434 + 0.987688i
−0.453990 + 0.891007i
0.891007 + 0.453990i
0.891007 0.453990i
−0.453990 0.891007i
−1.14412 0.831254i 0 0.618034 + 1.90211i 1.60758i 0 −1.00000 0.874032 2.68999i 0 −1.33630 + 1.83927i
757.2 −1.14412 0.831254i 0 0.618034 + 1.90211i 2.63506i 0 −1.00000 0.874032 2.68999i 0 2.19041 3.01484i
757.3 −1.14412 + 0.831254i 0 0.618034 1.90211i 2.63506i 0 −1.00000 0.874032 + 2.68999i 0 2.19041 + 3.01484i
757.4 −1.14412 + 0.831254i 0 0.618034 1.90211i 1.60758i 0 −1.00000 0.874032 + 2.68999i 0 −1.33630 1.83927i
757.5 −0.437016 1.34500i 0 −1.61803 + 1.17557i 4.29757i 0 −1.00000 2.28825 + 1.66251i 0 −5.78022 + 1.87811i
757.6 −0.437016 1.34500i 0 −1.61803 + 1.17557i 0.0549306i 0 −1.00000 2.28825 + 1.66251i 0 −0.0738814 + 0.0240055i
757.7 −0.437016 + 1.34500i 0 −1.61803 1.17557i 0.0549306i 0 −1.00000 2.28825 1.66251i 0 −0.0738814 0.0240055i
757.8 −0.437016 + 1.34500i 0 −1.61803 1.17557i 4.29757i 0 −1.00000 2.28825 1.66251i 0 −5.78022 1.87811i
757.9 0.437016 1.34500i 0 −1.61803 1.17557i 4.29757i 0 −1.00000 −2.28825 + 1.66251i 0 −5.78022 1.87811i
757.10 0.437016 1.34500i 0 −1.61803 1.17557i 0.0549306i 0 −1.00000 −2.28825 + 1.66251i 0 −0.0738814 0.0240055i
757.11 0.437016 + 1.34500i 0 −1.61803 + 1.17557i 0.0549306i 0 −1.00000 −2.28825 1.66251i 0 −0.0738814 + 0.0240055i
757.12 0.437016 + 1.34500i 0 −1.61803 + 1.17557i 4.29757i 0 −1.00000 −2.28825 1.66251i 0 −5.78022 + 1.87811i
757.13 1.14412 0.831254i 0 0.618034 1.90211i 1.60758i 0 −1.00000 −0.874032 2.68999i 0 −1.33630 1.83927i
757.14 1.14412 0.831254i 0 0.618034 1.90211i 2.63506i 0 −1.00000 −0.874032 2.68999i 0 2.19041 + 3.01484i
757.15 1.14412 + 0.831254i 0 0.618034 + 1.90211i 2.63506i 0 −1.00000 −0.874032 + 2.68999i 0 2.19041 3.01484i
757.16 1.14412 + 0.831254i 0 0.618034 + 1.90211i 1.60758i 0 −1.00000 −0.874032 + 2.68999i 0 −1.33630 + 1.83927i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 757.16
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
8.b even 2 1 inner
24.h odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1512.2.c.d 16
3.b odd 2 1 inner 1512.2.c.d 16
4.b odd 2 1 6048.2.c.d 16
8.b even 2 1 inner 1512.2.c.d 16
8.d odd 2 1 6048.2.c.d 16
12.b even 2 1 6048.2.c.d 16
24.f even 2 1 6048.2.c.d 16
24.h odd 2 1 inner 1512.2.c.d 16
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1512.2.c.d 16 1.a even 1 1 trivial
1512.2.c.d 16 3.b odd 2 1 inner
1512.2.c.d 16 8.b even 2 1 inner
1512.2.c.d 16 24.h odd 2 1 inner
6048.2.c.d 16 4.b odd 2 1
6048.2.c.d 16 8.d odd 2 1
6048.2.c.d 16 12.b even 2 1
6048.2.c.d 16 24.f even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1512, [\chi])\):

\( T_{5}^{8} + 28T_{5}^{6} + 194T_{5}^{4} + 332T_{5}^{2} + 1 \) Copy content Toggle raw display
\( T_{17}^{2} - 10 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{8} + 2 T^{6} + 4 T^{4} + \cdots + 16)^{2} \) Copy content Toggle raw display
$3$ \( T^{16} \) Copy content Toggle raw display
$5$ \( (T^{8} + 28 T^{6} + 194 T^{4} + \cdots + 1)^{2} \) Copy content Toggle raw display
$7$ \( (T + 1)^{16} \) Copy content Toggle raw display
$11$ \( (T^{8} + 28 T^{6} + 194 T^{4} + \cdots + 1)^{2} \) Copy content Toggle raw display
$13$ \( (T^{8} + 64 T^{6} + \cdots + 16)^{2} \) Copy content Toggle raw display
$17$ \( (T^{2} - 10)^{8} \) Copy content Toggle raw display
$19$ \( (T^{4} + 10 T^{2} + 5)^{4} \) Copy content Toggle raw display
$23$ \( (T^{8} - 132 T^{6} + \cdots + 491401)^{2} \) Copy content Toggle raw display
$29$ \( (T^{8} + 188 T^{6} + \cdots + 633616)^{2} \) Copy content Toggle raw display
$31$ \( (T^{4} - 10 T^{3} + \cdots + 205)^{4} \) Copy content Toggle raw display
$37$ \( (T^{8} + 104 T^{6} + \cdots + 361)^{2} \) Copy content Toggle raw display
$41$ \( (T^{8} - 108 T^{6} + \cdots + 78961)^{2} \) Copy content Toggle raw display
$43$ \( (T^{8} + 376 T^{6} + \cdots + 55413136)^{2} \) Copy content Toggle raw display
$47$ \( (T^{8} - 252 T^{6} + \cdots + 104976)^{2} \) Copy content Toggle raw display
$53$ \( (T^{8} + 208 T^{6} + \cdots + 952576)^{2} \) Copy content Toggle raw display
$59$ \( (T^{8} + 92 T^{6} + \cdots + 26896)^{2} \) Copy content Toggle raw display
$61$ \( (T^{8} + 184 T^{6} + \cdots + 430336)^{2} \) Copy content Toggle raw display
$67$ \( (T^{8} + 304 T^{6} + \cdots + 524176)^{2} \) Copy content Toggle raw display
$71$ \( (T^{8} - 172 T^{6} + \cdots + 1256641)^{2} \) Copy content Toggle raw display
$73$ \( (T^{4} - 6 T^{3} + \cdots - 324)^{4} \) Copy content Toggle raw display
$79$ \( (T^{4} - 6 T^{3} + \cdots + 6156)^{4} \) Copy content Toggle raw display
$83$ \( (T^{8} + 412 T^{6} + \cdots + 75968656)^{2} \) Copy content Toggle raw display
$89$ \( (T^{8} - 348 T^{6} + \cdots + 25816561)^{2} \) Copy content Toggle raw display
$97$ \( (T^{2} - 2 T - 124)^{8} \) Copy content Toggle raw display
show more
show less