L(s) = 1 | + (−1.14 − 0.831i)2-s + (0.618 + 1.90i)4-s − 1.60i·5-s − 7-s + (0.874 − 2.68i)8-s + (−1.33 + 1.83i)10-s + 0.0549i·11-s + 3.75i·13-s + (1.14 + 0.831i)14-s + (−3.23 + 2.35i)16-s − 3.16·17-s + 0.726i·19-s + (3.05 − 0.993i)20-s + (0.0456 − 0.0628i)22-s + 7.77·23-s + ⋯ |
L(s) = 1 | + (−0.809 − 0.587i)2-s + (0.309 + 0.951i)4-s − 0.718i·5-s − 0.377·7-s + (0.309 − 0.951i)8-s + (−0.422 + 0.581i)10-s + 0.0165i·11-s + 1.04i·13-s + (0.305 + 0.222i)14-s + (−0.809 + 0.587i)16-s − 0.766·17-s + 0.166i·19-s + (0.683 − 0.222i)20-s + (0.00973 − 0.0133i)22-s + 1.62·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1512 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.951 + 0.309i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1512 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.951 + 0.309i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.000260214\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.000260214\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.14 + 0.831i)T \) |
| 3 | \( 1 \) |
| 7 | \( 1 + T \) |
good | 5 | \( 1 + 1.60iT - 5T^{2} \) |
| 11 | \( 1 - 0.0549iT - 11T^{2} \) |
| 13 | \( 1 - 3.75iT - 13T^{2} \) |
| 17 | \( 1 + 3.16T + 17T^{2} \) |
| 19 | \( 1 - 0.726iT - 19T^{2} \) |
| 23 | \( 1 - 7.77T + 23T^{2} \) |
| 29 | \( 1 - 2.75iT - 29T^{2} \) |
| 31 | \( 1 + 2.14T + 31T^{2} \) |
| 37 | \( 1 - 0.600iT - 37T^{2} \) |
| 41 | \( 1 - 4.53T + 41T^{2} \) |
| 43 | \( 1 - 6.85iT - 43T^{2} \) |
| 47 | \( 1 - 0.744T + 47T^{2} \) |
| 53 | \( 1 + 10.5iT - 53T^{2} \) |
| 59 | \( 1 - 2.58iT - 59T^{2} \) |
| 61 | \( 1 + 9.80iT - 61T^{2} \) |
| 67 | \( 1 - 12.2iT - 67T^{2} \) |
| 71 | \( 1 - 9.19T + 71T^{2} \) |
| 73 | \( 1 - 3.85T + 73T^{2} \) |
| 79 | \( 1 - 10.9T + 79T^{2} \) |
| 83 | \( 1 - 13.1iT - 83T^{2} \) |
| 89 | \( 1 + 7.90T + 89T^{2} \) |
| 97 | \( 1 - 12.1T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.219291141496254089434621702378, −8.952579521062146103280067625003, −8.097687992975704409075580055264, −7.03448187553338112376079796737, −6.53716254786501925565335860969, −5.09545433482640628453741085049, −4.25274800701193427378138373363, −3.21352662711256416743209019623, −2.08297476250067160718509807824, −0.918981903376114875901564875076,
0.70221747554317751685818876965, 2.33935539129122843436273530047, 3.24868015431928591584529240165, 4.71789278533796824275740347826, 5.64948334675457885361396548976, 6.47184851714864620427290666483, 7.14728154134534323989898889537, 7.79420353723552000364926076632, 8.840456790866853369027235298389, 9.302292436675854441005989756211