Properties

Label 2-150-1.1-c15-0-44
Degree $2$
Conductor $150$
Sign $-1$
Analytic cond. $214.040$
Root an. cond. $14.6301$
Motivic weight $15$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 128·2-s + 2.18e3·3-s + 1.63e4·4-s + 2.79e5·6-s + 5.11e5·7-s + 2.09e6·8-s + 4.78e6·9-s − 1.99e7·11-s + 3.58e7·12-s − 1.80e8·13-s + 6.55e7·14-s + 2.68e8·16-s + 5.65e8·17-s + 6.12e8·18-s − 2.16e9·19-s + 1.11e9·21-s − 2.55e9·22-s − 3.44e9·23-s + 4.58e9·24-s − 2.30e10·26-s + 1.04e10·27-s + 8.38e9·28-s + 5.88e10·29-s − 1.31e11·31-s + 3.43e10·32-s − 4.36e10·33-s + 7.24e10·34-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.577·3-s + 1/2·4-s + 0.408·6-s + 0.234·7-s + 0.353·8-s + 1/3·9-s − 0.308·11-s + 0.288·12-s − 0.796·13-s + 0.166·14-s + 1/4·16-s + 0.334·17-s + 0.235·18-s − 0.556·19-s + 0.135·21-s − 0.218·22-s − 0.210·23-s + 0.204·24-s − 0.562·26-s + 0.192·27-s + 0.117·28-s + 0.633·29-s − 0.856·31-s + 0.176·32-s − 0.178·33-s + 0.236·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 150 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(16-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 150 ^{s/2} \, \Gamma_{\C}(s+15/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(150\)    =    \(2 \cdot 3 \cdot 5^{2}\)
Sign: $-1$
Analytic conductor: \(214.040\)
Root analytic conductor: \(14.6301\)
Motivic weight: \(15\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 150,\ (\ :15/2),\ -1)\)

Particular Values

\(L(8)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{17}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - p^{7} T \)
3 \( 1 - p^{7} T \)
5 \( 1 \)
good7 \( 1 - 73142 p T + p^{15} T^{2} \)
11 \( 1 + 1813418 p T + p^{15} T^{2} \)
13 \( 1 + 180100962 T + p^{15} T^{2} \)
17 \( 1 - 565654514 T + p^{15} T^{2} \)
19 \( 1 + 2169230520 T + p^{15} T^{2} \)
23 \( 1 + 3443072572 T + p^{15} T^{2} \)
29 \( 1 - 58843361520 T + p^{15} T^{2} \)
31 \( 1 + 131248934648 T + p^{15} T^{2} \)
37 \( 1 + 1018926148246 T + p^{15} T^{2} \)
41 \( 1 + 678311212798 T + p^{15} T^{2} \)
43 \( 1 - 1869778918508 T + p^{15} T^{2} \)
47 \( 1 + 2655546152576 T + p^{15} T^{2} \)
53 \( 1 - 7733409097998 T + p^{15} T^{2} \)
59 \( 1 - 12384358030090 T + p^{15} T^{2} \)
61 \( 1 + 28742040118198 T + p^{15} T^{2} \)
67 \( 1 + 62114558153336 T + p^{15} T^{2} \)
71 \( 1 - 17045715067452 T + p^{15} T^{2} \)
73 \( 1 - 94423385896028 T + p^{15} T^{2} \)
79 \( 1 - 5162001412320 T + p^{15} T^{2} \)
83 \( 1 + 388824931818532 T + p^{15} T^{2} \)
89 \( 1 - 64970078898710 T + p^{15} T^{2} \)
97 \( 1 + 424522131387176 T + p^{15} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.908756422689079364879960174388, −8.686978501798226970572510652682, −7.68387736998302542568162645197, −6.77360299447531995249641327149, −5.47985867709444749680006705601, −4.55514892194849212236119816119, −3.47158730304053820464309971119, −2.47747290895136604635881319315, −1.53982859437516478884648952900, 0, 1.53982859437516478884648952900, 2.47747290895136604635881319315, 3.47158730304053820464309971119, 4.55514892194849212236119816119, 5.47985867709444749680006705601, 6.77360299447531995249641327149, 7.68387736998302542568162645197, 8.686978501798226970572510652682, 9.908756422689079364879960174388

Graph of the $Z$-function along the critical line