Properties

Label 150.16.a.i
Level $150$
Weight $16$
Character orbit 150.a
Self dual yes
Analytic conductor $214.040$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [150,16,Mod(1,150)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("150.1"); S:= CuspForms(chi, 16); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(150, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 16, names="a")
 
Level: \( N \) \(=\) \( 150 = 2 \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 16 \)
Character orbit: \([\chi]\) \(=\) 150.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,128,2187,16384,0,279936,511994] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(214.040257650\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 30)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + 128 q^{2} + 2187 q^{3} + 16384 q^{4} + 279936 q^{6} + 511994 q^{7} + 2097152 q^{8} + 4782969 q^{9} - 19947598 q^{11} + 35831808 q^{12} - 180100962 q^{13} + 65535232 q^{14} + 268435456 q^{16} + 565654514 q^{17}+ \cdots - 95408742858462 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
128.000 2187.00 16384.0 0 279936. 511994. 2.09715e6 4.78297e6 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( -1 \)
\(5\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 150.16.a.i 1
5.b even 2 1 150.16.a.b 1
5.c odd 4 2 30.16.c.a 2
15.e even 4 2 90.16.c.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
30.16.c.a 2 5.c odd 4 2
90.16.c.a 2 15.e even 4 2
150.16.a.b 1 5.b even 2 1
150.16.a.i 1 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{7} - 511994 \) acting on \(S_{16}^{\mathrm{new}}(\Gamma_0(150))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T - 128 \) Copy content Toggle raw display
$3$ \( T - 2187 \) Copy content Toggle raw display
$5$ \( T \) Copy content Toggle raw display
$7$ \( T - 511994 \) Copy content Toggle raw display
$11$ \( T + 19947598 \) Copy content Toggle raw display
$13$ \( T + 180100962 \) Copy content Toggle raw display
$17$ \( T - 565654514 \) Copy content Toggle raw display
$19$ \( T + 2169230520 \) Copy content Toggle raw display
$23$ \( T + 3443072572 \) Copy content Toggle raw display
$29$ \( T - 58843361520 \) Copy content Toggle raw display
$31$ \( T + 131248934648 \) Copy content Toggle raw display
$37$ \( T + 1018926148246 \) Copy content Toggle raw display
$41$ \( T + 678311212798 \) Copy content Toggle raw display
$43$ \( T - 1869778918508 \) Copy content Toggle raw display
$47$ \( T + 2655546152576 \) Copy content Toggle raw display
$53$ \( T - 7733409097998 \) Copy content Toggle raw display
$59$ \( T - 12384358030090 \) Copy content Toggle raw display
$61$ \( T + 28742040118198 \) Copy content Toggle raw display
$67$ \( T + 62114558153336 \) Copy content Toggle raw display
$71$ \( T - 17045715067452 \) Copy content Toggle raw display
$73$ \( T - 94423385896028 \) Copy content Toggle raw display
$79$ \( T - 5162001412320 \) Copy content Toggle raw display
$83$ \( T + 388824931818532 \) Copy content Toggle raw display
$89$ \( T - 64970078898710 \) Copy content Toggle raw display
$97$ \( T + 424522131387176 \) Copy content Toggle raw display
show more
show less