| L(s) = 1 | − 8.19e3·4-s − 1.06e6·9-s + 1.19e7·11-s + 5.03e7·16-s − 4.71e8·19-s + 3.96e9·29-s − 7.19e9·31-s + 8.70e9·36-s + 2.15e10·41-s − 9.79e10·44-s + 2.41e11·49-s + 6.57e11·59-s + 1.97e12·61-s − 2.74e11·64-s + 5.25e12·71-s + 3.86e12·76-s − 1.02e13·79-s + 8.47e11·81-s − 2.17e13·89-s − 1.27e13·99-s + 2.64e13·101-s − 4.79e13·109-s − 3.24e13·116-s − 3.10e13·121-s + 5.89e13·124-s + 127-s + 131-s + ⋯ |
| L(s) = 1 | − 4-s − 2/3·9-s + 2.03·11-s + 3/4·16-s − 2.30·19-s + 1.23·29-s − 1.45·31-s + 2/3·36-s + 0.709·41-s − 2.03·44-s + 2.49·49-s + 2.02·59-s + 4.91·61-s − 1/2·64-s + 4.87·71-s + 2.30·76-s − 4.72·79-s + 1/3·81-s − 4.64·89-s − 1.35·99-s + 2.48·101-s − 2.73·109-s − 1.23·116-s − 0.899·121-s + 1.45·124-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{4} \cdot 5^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(14-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{4} \cdot 5^{8}\right)^{s/2} \, \Gamma_{\C}(s+13/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
Particular Values
| \(L(7)\) |
\(\approx\) |
\(0.9290212962\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.9290212962\) |
| \(L(\frac{15}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.01778825720110275462934851368, −7.01477402418503796553537338074, −6.73338593285059125252847134017, −6.26806494000300350396268595143, −6.06833111686468750775859277843, −5.71150374679172690303035326241, −5.51109124589768791551403144667, −5.23077841594208087259279703428, −5.02089492305847831549704528718, −4.48012748589652471026949115881, −4.32755033418447625059234556399, −3.88010913867326704877467938211, −3.82372430207192990986325736132, −3.73585943939500932467234651955, −3.56844490579942271298234099676, −2.56328244181267694896083834147, −2.51254088795644306126035277897, −2.43573266295297670712789182765, −2.23251761888813496246379419768, −1.46484143796707659905974421778, −1.28466757967830769187509286947, −1.06085486972939136081634916534, −0.896365769112155196958612095086, −0.35278812894125799970452229204, −0.13624238182852039020254171291,
0.13624238182852039020254171291, 0.35278812894125799970452229204, 0.896365769112155196958612095086, 1.06085486972939136081634916534, 1.28466757967830769187509286947, 1.46484143796707659905974421778, 2.23251761888813496246379419768, 2.43573266295297670712789182765, 2.51254088795644306126035277897, 2.56328244181267694896083834147, 3.56844490579942271298234099676, 3.73585943939500932467234651955, 3.82372430207192990986325736132, 3.88010913867326704877467938211, 4.32755033418447625059234556399, 4.48012748589652471026949115881, 5.02089492305847831549704528718, 5.23077841594208087259279703428, 5.51109124589768791551403144667, 5.71150374679172690303035326241, 6.06833111686468750775859277843, 6.26806494000300350396268595143, 6.73338593285059125252847134017, 7.01477402418503796553537338074, 7.01778825720110275462934851368