L(s) = 1 | + 2.21·3-s + 3.21i·5-s − i·7-s + 1.90·9-s + 2.68i·11-s + (3.59 + 0.311i)13-s + 7.11i·15-s − 3.59·17-s + 8.54i·19-s − 2.21i·21-s − 3.28·23-s − 5.33·25-s − 2.42·27-s + 2.05·29-s − 5.83i·31-s + ⋯ |
L(s) = 1 | + 1.27·3-s + 1.43i·5-s − 0.377i·7-s + 0.634·9-s + 0.810i·11-s + (0.996 + 0.0862i)13-s + 1.83i·15-s − 0.871·17-s + 1.96i·19-s − 0.483i·21-s − 0.684·23-s − 1.06·25-s − 0.467·27-s + 0.380·29-s − 1.04i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1456 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0862 - 0.996i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1456 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.0862 - 0.996i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.458460072\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.458460072\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 + iT \) |
| 13 | \( 1 + (-3.59 - 0.311i)T \) |
good | 3 | \( 1 - 2.21T + 3T^{2} \) |
| 5 | \( 1 - 3.21iT - 5T^{2} \) |
| 11 | \( 1 - 2.68iT - 11T^{2} \) |
| 17 | \( 1 + 3.59T + 17T^{2} \) |
| 19 | \( 1 - 8.54iT - 19T^{2} \) |
| 23 | \( 1 + 3.28T + 23T^{2} \) |
| 29 | \( 1 - 2.05T + 29T^{2} \) |
| 31 | \( 1 + 5.83iT - 31T^{2} \) |
| 37 | \( 1 + 3.93iT - 37T^{2} \) |
| 41 | \( 1 - 0.755iT - 41T^{2} \) |
| 43 | \( 1 - 8.80T + 43T^{2} \) |
| 47 | \( 1 - 1.88iT - 47T^{2} \) |
| 53 | \( 1 - 2.52T + 53T^{2} \) |
| 59 | \( 1 - 7.33iT - 59T^{2} \) |
| 61 | \( 1 - 9.05T + 61T^{2} \) |
| 67 | \( 1 + 0.428iT - 67T^{2} \) |
| 71 | \( 1 + 8.98iT - 71T^{2} \) |
| 73 | \( 1 + 5.79iT - 73T^{2} \) |
| 79 | \( 1 - 4.47T + 79T^{2} \) |
| 83 | \( 1 - 10.8iT - 83T^{2} \) |
| 89 | \( 1 + 5.36iT - 89T^{2} \) |
| 97 | \( 1 - 9.62iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.733100360354159350588155524920, −8.886258227389658819069736926370, −7.931691365157578609554651788153, −7.53363311045592207596592644569, −6.55607586007700855672658719899, −5.86704458711096578636620185023, −4.08609641837020435039079321723, −3.71889384751308007101716524734, −2.62233052967325773937958133898, −1.86447380574767829043218562326,
0.839734517815158978252223269257, 2.17092339867793364235131585471, 3.15327515591736018569444226146, 4.16621783832338551552234980201, 5.01546477205294392771521698608, 5.96905572292917494067598098813, 7.02670414360429332442965333892, 8.229604622737745402067897298534, 8.676687357156461332666943597938, 8.899899195712092950269195684396