Properties

Label 1456.2.k.c.337.6
Level $1456$
Weight $2$
Character 1456.337
Analytic conductor $11.626$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1456,2,Mod(337,1456)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1456.337"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1456, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1456 = 2^{4} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1456.k (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.6262185343\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.350464.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} + 2x^{4} + 2x^{3} + 4x^{2} - 4x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 91)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 337.6
Root \(1.45161 - 1.45161i\) of defining polynomial
Character \(\chi\) \(=\) 1456.337
Dual form 1456.2.k.c.337.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.21432 q^{3} +3.21432i q^{5} -1.00000i q^{7} +1.90321 q^{9} +2.68889i q^{11} +(3.59210 + 0.311108i) q^{13} +7.11753i q^{15} -3.59210 q^{17} +8.54617i q^{19} -2.21432i q^{21} -3.28100 q^{23} -5.33185 q^{25} -2.42864 q^{27} +2.05086 q^{29} -5.83654i q^{31} +5.95407i q^{33} +3.21432 q^{35} -3.93332i q^{37} +(7.95407 + 0.688892i) q^{39} +0.755569i q^{41} +8.80642 q^{43} +6.11753i q^{45} +1.88247i q^{47} -1.00000 q^{49} -7.95407 q^{51} +2.52543 q^{53} -8.64296 q^{55} +18.9240i q^{57} +7.33185i q^{59} +9.05086 q^{61} -1.90321i q^{63} +(-1.00000 + 11.5462i) q^{65} -0.428639i q^{67} -7.26517 q^{69} -8.98418i q^{71} -5.79060i q^{73} -11.8064 q^{75} +2.68889 q^{77} +4.47949 q^{79} -11.0874 q^{81} +10.8272i q^{83} -11.5462i q^{85} +4.54125 q^{87} -5.36196i q^{89} +(0.311108 - 3.59210i) q^{91} -12.9240i q^{93} -27.4701 q^{95} +9.62867i q^{97} +5.11753i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 2 q^{9} + 8 q^{13} - 8 q^{17} - 6 q^{23} + 8 q^{25} + 12 q^{27} - 14 q^{29} + 6 q^{35} + 8 q^{39} + 26 q^{43} - 6 q^{49} - 8 q^{51} + 2 q^{53} - 12 q^{55} + 28 q^{61} - 6 q^{65} - 4 q^{69} - 44 q^{75}+ \cdots - 58 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1456\mathbb{Z}\right)^\times\).

\(n\) \(561\) \(911\) \(1093\) \(1249\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.21432 1.27844 0.639219 0.769025i \(-0.279258\pi\)
0.639219 + 0.769025i \(0.279258\pi\)
\(4\) 0 0
\(5\) 3.21432i 1.43749i 0.695275 + 0.718744i \(0.255283\pi\)
−0.695275 + 0.718744i \(0.744717\pi\)
\(6\) 0 0
\(7\) 1.00000i 0.377964i
\(8\) 0 0
\(9\) 1.90321 0.634404
\(10\) 0 0
\(11\) 2.68889i 0.810731i 0.914155 + 0.405366i \(0.132856\pi\)
−0.914155 + 0.405366i \(0.867144\pi\)
\(12\) 0 0
\(13\) 3.59210 + 0.311108i 0.996270 + 0.0862858i
\(14\) 0 0
\(15\) 7.11753i 1.83774i
\(16\) 0 0
\(17\) −3.59210 −0.871213 −0.435607 0.900137i \(-0.643466\pi\)
−0.435607 + 0.900137i \(0.643466\pi\)
\(18\) 0 0
\(19\) 8.54617i 1.96063i 0.197449 + 0.980313i \(0.436734\pi\)
−0.197449 + 0.980313i \(0.563266\pi\)
\(20\) 0 0
\(21\) 2.21432i 0.483204i
\(22\) 0 0
\(23\) −3.28100 −0.684135 −0.342068 0.939675i \(-0.611127\pi\)
−0.342068 + 0.939675i \(0.611127\pi\)
\(24\) 0 0
\(25\) −5.33185 −1.06637
\(26\) 0 0
\(27\) −2.42864 −0.467392
\(28\) 0 0
\(29\) 2.05086 0.380834 0.190417 0.981703i \(-0.439016\pi\)
0.190417 + 0.981703i \(0.439016\pi\)
\(30\) 0 0
\(31\) 5.83654i 1.04827i −0.851634 0.524136i \(-0.824388\pi\)
0.851634 0.524136i \(-0.175612\pi\)
\(32\) 0 0
\(33\) 5.95407i 1.03647i
\(34\) 0 0
\(35\) 3.21432 0.543319
\(36\) 0 0
\(37\) 3.93332i 0.646634i −0.946291 0.323317i \(-0.895202\pi\)
0.946291 0.323317i \(-0.104798\pi\)
\(38\) 0 0
\(39\) 7.95407 + 0.688892i 1.27367 + 0.110311i
\(40\) 0 0
\(41\) 0.755569i 0.118000i 0.998258 + 0.0590000i \(0.0187912\pi\)
−0.998258 + 0.0590000i \(0.981209\pi\)
\(42\) 0 0
\(43\) 8.80642 1.34297 0.671484 0.741019i \(-0.265657\pi\)
0.671484 + 0.741019i \(0.265657\pi\)
\(44\) 0 0
\(45\) 6.11753i 0.911948i
\(46\) 0 0
\(47\) 1.88247i 0.274586i 0.990530 + 0.137293i \(0.0438402\pi\)
−0.990530 + 0.137293i \(0.956160\pi\)
\(48\) 0 0
\(49\) −1.00000 −0.142857
\(50\) 0 0
\(51\) −7.95407 −1.11379
\(52\) 0 0
\(53\) 2.52543 0.346894 0.173447 0.984843i \(-0.444509\pi\)
0.173447 + 0.984843i \(0.444509\pi\)
\(54\) 0 0
\(55\) −8.64296 −1.16542
\(56\) 0 0
\(57\) 18.9240i 2.50654i
\(58\) 0 0
\(59\) 7.33185i 0.954526i 0.878761 + 0.477263i \(0.158371\pi\)
−0.878761 + 0.477263i \(0.841629\pi\)
\(60\) 0 0
\(61\) 9.05086 1.15884 0.579422 0.815028i \(-0.303278\pi\)
0.579422 + 0.815028i \(0.303278\pi\)
\(62\) 0 0
\(63\) 1.90321i 0.239782i
\(64\) 0 0
\(65\) −1.00000 + 11.5462i −0.124035 + 1.43213i
\(66\) 0 0
\(67\) 0.428639i 0.0523666i −0.999657 0.0261833i \(-0.991665\pi\)
0.999657 0.0261833i \(-0.00833536\pi\)
\(68\) 0 0
\(69\) −7.26517 −0.874624
\(70\) 0 0
\(71\) 8.98418i 1.06623i −0.846044 0.533113i \(-0.821022\pi\)
0.846044 0.533113i \(-0.178978\pi\)
\(72\) 0 0
\(73\) 5.79060i 0.677739i −0.940833 0.338869i \(-0.889956\pi\)
0.940833 0.338869i \(-0.110044\pi\)
\(74\) 0 0
\(75\) −11.8064 −1.36329
\(76\) 0 0
\(77\) 2.68889 0.306428
\(78\) 0 0
\(79\) 4.47949 0.503983 0.251991 0.967730i \(-0.418915\pi\)
0.251991 + 0.967730i \(0.418915\pi\)
\(80\) 0 0
\(81\) −11.0874 −1.23194
\(82\) 0 0
\(83\) 10.8272i 1.18844i 0.804304 + 0.594218i \(0.202538\pi\)
−0.804304 + 0.594218i \(0.797462\pi\)
\(84\) 0 0
\(85\) 11.5462i 1.25236i
\(86\) 0 0
\(87\) 4.54125 0.486873
\(88\) 0 0
\(89\) 5.36196i 0.568367i −0.958770 0.284183i \(-0.908278\pi\)
0.958770 0.284183i \(-0.0917225\pi\)
\(90\) 0 0
\(91\) 0.311108 3.59210i 0.0326130 0.376555i
\(92\) 0 0
\(93\) 12.9240i 1.34015i
\(94\) 0 0
\(95\) −27.4701 −2.81838
\(96\) 0 0
\(97\) 9.62867i 0.977643i 0.872384 + 0.488822i \(0.162573\pi\)
−0.872384 + 0.488822i \(0.837427\pi\)
\(98\) 0 0
\(99\) 5.11753i 0.514331i
\(100\) 0 0
\(101\) −13.6938 −1.36259 −0.681293 0.732011i \(-0.738582\pi\)
−0.681293 + 0.732011i \(0.738582\pi\)
\(102\) 0 0
\(103\) 12.2953 1.21149 0.605745 0.795659i \(-0.292875\pi\)
0.605745 + 0.795659i \(0.292875\pi\)
\(104\) 0 0
\(105\) 7.11753 0.694600
\(106\) 0 0
\(107\) 18.1891 1.75841 0.879205 0.476444i \(-0.158075\pi\)
0.879205 + 0.476444i \(0.158075\pi\)
\(108\) 0 0
\(109\) 8.36196i 0.800931i 0.916312 + 0.400465i \(0.131152\pi\)
−0.916312 + 0.400465i \(0.868848\pi\)
\(110\) 0 0
\(111\) 8.70964i 0.826682i
\(112\) 0 0
\(113\) −8.46520 −0.796339 −0.398170 0.917312i \(-0.630354\pi\)
−0.398170 + 0.917312i \(0.630354\pi\)
\(114\) 0 0
\(115\) 10.5462i 0.983436i
\(116\) 0 0
\(117\) 6.83654 + 0.592104i 0.632038 + 0.0547400i
\(118\) 0 0
\(119\) 3.59210i 0.329288i
\(120\) 0 0
\(121\) 3.76986 0.342714
\(122\) 0 0
\(123\) 1.67307i 0.150856i
\(124\) 0 0
\(125\) 1.06668i 0.0954065i
\(126\) 0 0
\(127\) 4.08742 0.362700 0.181350 0.983419i \(-0.441953\pi\)
0.181350 + 0.983419i \(0.441953\pi\)
\(128\) 0 0
\(129\) 19.5002 1.71690
\(130\) 0 0
\(131\) −5.93978 −0.518961 −0.259480 0.965748i \(-0.583551\pi\)
−0.259480 + 0.965748i \(0.583551\pi\)
\(132\) 0 0
\(133\) 8.54617 0.741047
\(134\) 0 0
\(135\) 7.80642i 0.671870i
\(136\) 0 0
\(137\) 16.3620i 1.39790i −0.715172 0.698948i \(-0.753652\pi\)
0.715172 0.698948i \(-0.246348\pi\)
\(138\) 0 0
\(139\) −3.03011 −0.257011 −0.128505 0.991709i \(-0.541018\pi\)
−0.128505 + 0.991709i \(0.541018\pi\)
\(140\) 0 0
\(141\) 4.16839i 0.351041i
\(142\) 0 0
\(143\) −0.836535 + 9.65878i −0.0699546 + 0.807708i
\(144\) 0 0
\(145\) 6.59210i 0.547444i
\(146\) 0 0
\(147\) −2.21432 −0.182634
\(148\) 0 0
\(149\) 14.5368i 1.19090i −0.803392 0.595451i \(-0.796974\pi\)
0.803392 0.595451i \(-0.203026\pi\)
\(150\) 0 0
\(151\) 19.9748i 1.62553i −0.582594 0.812764i \(-0.697962\pi\)
0.582594 0.812764i \(-0.302038\pi\)
\(152\) 0 0
\(153\) −6.83654 −0.552701
\(154\) 0 0
\(155\) 18.7605 1.50688
\(156\) 0 0
\(157\) 7.39853 0.590467 0.295233 0.955425i \(-0.404603\pi\)
0.295233 + 0.955425i \(0.404603\pi\)
\(158\) 0 0
\(159\) 5.59210 0.443483
\(160\) 0 0
\(161\) 3.28100i 0.258579i
\(162\) 0 0
\(163\) 2.32693i 0.182259i 0.995839 + 0.0911296i \(0.0290477\pi\)
−0.995839 + 0.0911296i \(0.970952\pi\)
\(164\) 0 0
\(165\) −19.1383 −1.48991
\(166\) 0 0
\(167\) 3.42219i 0.264817i −0.991195 0.132408i \(-0.957729\pi\)
0.991195 0.132408i \(-0.0422710\pi\)
\(168\) 0 0
\(169\) 12.8064 + 2.23506i 0.985110 + 0.171928i
\(170\) 0 0
\(171\) 16.2652i 1.24383i
\(172\) 0 0
\(173\) −8.27454 −0.629102 −0.314551 0.949241i \(-0.601854\pi\)
−0.314551 + 0.949241i \(0.601854\pi\)
\(174\) 0 0
\(175\) 5.33185i 0.403050i
\(176\) 0 0
\(177\) 16.2351i 1.22030i
\(178\) 0 0
\(179\) −16.2257 −1.21277 −0.606383 0.795173i \(-0.707380\pi\)
−0.606383 + 0.795173i \(0.707380\pi\)
\(180\) 0 0
\(181\) 9.20495 0.684199 0.342099 0.939664i \(-0.388862\pi\)
0.342099 + 0.939664i \(0.388862\pi\)
\(182\) 0 0
\(183\) 20.0415 1.48151
\(184\) 0 0
\(185\) 12.6430 0.929529
\(186\) 0 0
\(187\) 9.65878i 0.706320i
\(188\) 0 0
\(189\) 2.42864i 0.176658i
\(190\) 0 0
\(191\) 6.66815 0.482490 0.241245 0.970464i \(-0.422444\pi\)
0.241245 + 0.970464i \(0.422444\pi\)
\(192\) 0 0
\(193\) 20.6035i 1.48307i −0.670914 0.741535i \(-0.734098\pi\)
0.670914 0.741535i \(-0.265902\pi\)
\(194\) 0 0
\(195\) −2.21432 + 25.5669i −0.158571 + 1.83088i
\(196\) 0 0
\(197\) 8.36842i 0.596225i −0.954531 0.298112i \(-0.903643\pi\)
0.954531 0.298112i \(-0.0963571\pi\)
\(198\) 0 0
\(199\) −0.601472 −0.0426372 −0.0213186 0.999773i \(-0.506786\pi\)
−0.0213186 + 0.999773i \(0.506786\pi\)
\(200\) 0 0
\(201\) 0.949145i 0.0669475i
\(202\) 0 0
\(203\) 2.05086i 0.143942i
\(204\) 0 0
\(205\) −2.42864 −0.169624
\(206\) 0 0
\(207\) −6.24443 −0.434018
\(208\) 0 0
\(209\) −22.9797 −1.58954
\(210\) 0 0
\(211\) 1.90321 0.131023 0.0655113 0.997852i \(-0.479132\pi\)
0.0655113 + 0.997852i \(0.479132\pi\)
\(212\) 0 0
\(213\) 19.8938i 1.36310i
\(214\) 0 0
\(215\) 28.3067i 1.93050i
\(216\) 0 0
\(217\) −5.83654 −0.396210
\(218\) 0 0
\(219\) 12.8222i 0.866447i
\(220\) 0 0
\(221\) −12.9032 1.11753i −0.867964 0.0751733i
\(222\) 0 0
\(223\) 10.6336i 0.712078i −0.934471 0.356039i \(-0.884127\pi\)
0.934471 0.356039i \(-0.115873\pi\)
\(224\) 0 0
\(225\) −10.1476 −0.676510
\(226\) 0 0
\(227\) 15.0509i 0.998960i −0.866325 0.499480i \(-0.833524\pi\)
0.866325 0.499480i \(-0.166476\pi\)
\(228\) 0 0
\(229\) 6.53480i 0.431831i 0.976412 + 0.215916i \(0.0692736\pi\)
−0.976412 + 0.215916i \(0.930726\pi\)
\(230\) 0 0
\(231\) 5.95407 0.391749
\(232\) 0 0
\(233\) 27.9590 1.83165 0.915827 0.401573i \(-0.131536\pi\)
0.915827 + 0.401573i \(0.131536\pi\)
\(234\) 0 0
\(235\) −6.05086 −0.394714
\(236\) 0 0
\(237\) 9.91903 0.644310
\(238\) 0 0
\(239\) 19.5812i 1.26660i 0.773905 + 0.633301i \(0.218301\pi\)
−0.773905 + 0.633301i \(0.781699\pi\)
\(240\) 0 0
\(241\) 13.3575i 0.860433i 0.902726 + 0.430217i \(0.141563\pi\)
−0.902726 + 0.430217i \(0.858437\pi\)
\(242\) 0 0
\(243\) −17.2652 −1.10756
\(244\) 0 0
\(245\) 3.21432i 0.205355i
\(246\) 0 0
\(247\) −2.65878 + 30.6987i −0.169174 + 1.95331i
\(248\) 0 0
\(249\) 23.9748i 1.51934i
\(250\) 0 0
\(251\) 3.29682 0.208093 0.104047 0.994572i \(-0.466821\pi\)
0.104047 + 0.994572i \(0.466821\pi\)
\(252\) 0 0
\(253\) 8.82225i 0.554650i
\(254\) 0 0
\(255\) 25.5669i 1.60106i
\(256\) 0 0
\(257\) 23.6938 1.47798 0.738990 0.673717i \(-0.235303\pi\)
0.738990 + 0.673717i \(0.235303\pi\)
\(258\) 0 0
\(259\) −3.93332 −0.244405
\(260\) 0 0
\(261\) 3.90321 0.241603
\(262\) 0 0
\(263\) −9.99063 −0.616049 −0.308024 0.951378i \(-0.599668\pi\)
−0.308024 + 0.951378i \(0.599668\pi\)
\(264\) 0 0
\(265\) 8.11753i 0.498656i
\(266\) 0 0
\(267\) 11.8731i 0.726622i
\(268\) 0 0
\(269\) −18.2034 −1.10988 −0.554941 0.831890i \(-0.687259\pi\)
−0.554941 + 0.831890i \(0.687259\pi\)
\(270\) 0 0
\(271\) 24.1748i 1.46852i −0.678870 0.734258i \(-0.737530\pi\)
0.678870 0.734258i \(-0.262470\pi\)
\(272\) 0 0
\(273\) 0.688892 7.95407i 0.0416937 0.481402i
\(274\) 0 0
\(275\) 14.3368i 0.864540i
\(276\) 0 0
\(277\) −1.69535 −0.101863 −0.0509317 0.998702i \(-0.516219\pi\)
−0.0509317 + 0.998702i \(0.516219\pi\)
\(278\) 0 0
\(279\) 11.1082i 0.665028i
\(280\) 0 0
\(281\) 11.6479i 0.694854i −0.937707 0.347427i \(-0.887055\pi\)
0.937707 0.347427i \(-0.112945\pi\)
\(282\) 0 0
\(283\) 12.1334 0.721253 0.360626 0.932710i \(-0.382563\pi\)
0.360626 + 0.932710i \(0.382563\pi\)
\(284\) 0 0
\(285\) −60.8276 −3.60312
\(286\) 0 0
\(287\) 0.755569 0.0445998
\(288\) 0 0
\(289\) −4.09679 −0.240988
\(290\) 0 0
\(291\) 21.3210i 1.24986i
\(292\) 0 0
\(293\) 11.4538i 0.669140i −0.942371 0.334570i \(-0.891409\pi\)
0.942371 0.334570i \(-0.108591\pi\)
\(294\) 0 0
\(295\) −23.5669 −1.37212
\(296\) 0 0
\(297\) 6.53035i 0.378929i
\(298\) 0 0
\(299\) −11.7857 1.02074i −0.681583 0.0590311i
\(300\) 0 0
\(301\) 8.80642i 0.507594i
\(302\) 0 0
\(303\) −30.3225 −1.74198
\(304\) 0 0
\(305\) 29.0923i 1.66582i
\(306\) 0 0
\(307\) 3.96989i 0.226574i 0.993562 + 0.113287i \(0.0361379\pi\)
−0.993562 + 0.113287i \(0.963862\pi\)
\(308\) 0 0
\(309\) 27.2257 1.54882
\(310\) 0 0
\(311\) 27.3481 1.55077 0.775386 0.631488i \(-0.217556\pi\)
0.775386 + 0.631488i \(0.217556\pi\)
\(312\) 0 0
\(313\) −19.1032 −1.07978 −0.539890 0.841736i \(-0.681534\pi\)
−0.539890 + 0.841736i \(0.681534\pi\)
\(314\) 0 0
\(315\) 6.11753 0.344684
\(316\) 0 0
\(317\) 9.90813i 0.556496i 0.960509 + 0.278248i \(0.0897538\pi\)
−0.960509 + 0.278248i \(0.910246\pi\)
\(318\) 0 0
\(319\) 5.51453i 0.308754i
\(320\) 0 0
\(321\) 40.2766 2.24802
\(322\) 0 0
\(323\) 30.6987i 1.70812i
\(324\) 0 0
\(325\) −19.1526 1.65878i −1.06239 0.0920126i
\(326\) 0 0
\(327\) 18.5161i 1.02394i
\(328\) 0 0
\(329\) 1.88247 0.103784
\(330\) 0 0
\(331\) 23.4193i 1.28724i −0.765345 0.643620i \(-0.777432\pi\)
0.765345 0.643620i \(-0.222568\pi\)
\(332\) 0 0
\(333\) 7.48595i 0.410227i
\(334\) 0 0
\(335\) 1.37778 0.0752764
\(336\) 0 0
\(337\) 7.51606 0.409426 0.204713 0.978822i \(-0.434374\pi\)
0.204713 + 0.978822i \(0.434374\pi\)
\(338\) 0 0
\(339\) −18.7447 −1.01807
\(340\) 0 0
\(341\) 15.6938 0.849868
\(342\) 0 0
\(343\) 1.00000i 0.0539949i
\(344\) 0 0
\(345\) 23.3526i 1.25726i
\(346\) 0 0
\(347\) −5.64449 −0.303012 −0.151506 0.988456i \(-0.548412\pi\)
−0.151506 + 0.988456i \(0.548412\pi\)
\(348\) 0 0
\(349\) 24.1590i 1.29320i −0.762828 0.646601i \(-0.776190\pi\)
0.762828 0.646601i \(-0.223810\pi\)
\(350\) 0 0
\(351\) −8.72393 0.755569i −0.465649 0.0403293i
\(352\) 0 0
\(353\) 36.1289i 1.92295i 0.274896 + 0.961474i \(0.411356\pi\)
−0.274896 + 0.961474i \(0.588644\pi\)
\(354\) 0 0
\(355\) 28.8780 1.53269
\(356\) 0 0
\(357\) 7.95407i 0.420974i
\(358\) 0 0
\(359\) 17.4128i 0.919013i 0.888174 + 0.459507i \(0.151974\pi\)
−0.888174 + 0.459507i \(0.848026\pi\)
\(360\) 0 0
\(361\) −54.0370 −2.84405
\(362\) 0 0
\(363\) 8.34767 0.438139
\(364\) 0 0
\(365\) 18.6128 0.974241
\(366\) 0 0
\(367\) −2.93825 −0.153375 −0.0766876 0.997055i \(-0.524434\pi\)
−0.0766876 + 0.997055i \(0.524434\pi\)
\(368\) 0 0
\(369\) 1.43801i 0.0748597i
\(370\) 0 0
\(371\) 2.52543i 0.131114i
\(372\) 0 0
\(373\) −18.7699 −0.971866 −0.485933 0.873996i \(-0.661520\pi\)
−0.485933 + 0.873996i \(0.661520\pi\)
\(374\) 0 0
\(375\) 2.36196i 0.121971i
\(376\) 0 0
\(377\) 7.36689 + 0.638037i 0.379414 + 0.0328606i
\(378\) 0 0
\(379\) 23.6894i 1.21684i −0.793615 0.608421i \(-0.791803\pi\)
0.793615 0.608421i \(-0.208197\pi\)
\(380\) 0 0
\(381\) 9.05086 0.463689
\(382\) 0 0
\(383\) 31.6128i 1.61534i −0.589634 0.807671i \(-0.700728\pi\)
0.589634 0.807671i \(-0.299272\pi\)
\(384\) 0 0
\(385\) 8.64296i 0.440486i
\(386\) 0 0
\(387\) 16.7605 0.851984
\(388\) 0 0
\(389\) 20.0558 1.01687 0.508434 0.861101i \(-0.330225\pi\)
0.508434 + 0.861101i \(0.330225\pi\)
\(390\) 0 0
\(391\) 11.7857 0.596027
\(392\) 0 0
\(393\) −13.1526 −0.663459
\(394\) 0 0
\(395\) 14.3985i 0.724469i
\(396\) 0 0
\(397\) 22.8731i 1.14797i −0.818867 0.573984i \(-0.805397\pi\)
0.818867 0.573984i \(-0.194603\pi\)
\(398\) 0 0
\(399\) 18.9240 0.947383
\(400\) 0 0
\(401\) 5.61285i 0.280292i 0.990131 + 0.140146i \(0.0447572\pi\)
−0.990131 + 0.140146i \(0.955243\pi\)
\(402\) 0 0
\(403\) 1.81579 20.9654i 0.0904510 1.04436i
\(404\) 0 0
\(405\) 35.6385i 1.77089i
\(406\) 0 0
\(407\) 10.5763 0.524247
\(408\) 0 0
\(409\) 26.1175i 1.29143i −0.763579 0.645714i \(-0.776560\pi\)
0.763579 0.645714i \(-0.223440\pi\)
\(410\) 0 0
\(411\) 36.2306i 1.78712i
\(412\) 0 0
\(413\) 7.33185 0.360777
\(414\) 0 0
\(415\) −34.8020 −1.70836
\(416\) 0 0
\(417\) −6.70964 −0.328572
\(418\) 0 0
\(419\) 25.2464 1.23337 0.616685 0.787210i \(-0.288475\pi\)
0.616685 + 0.787210i \(0.288475\pi\)
\(420\) 0 0
\(421\) 8.22861i 0.401038i −0.979690 0.200519i \(-0.935737\pi\)
0.979690 0.200519i \(-0.0642628\pi\)
\(422\) 0 0
\(423\) 3.58274i 0.174199i
\(424\) 0 0
\(425\) 19.1526 0.929036
\(426\) 0 0
\(427\) 9.05086i 0.438002i
\(428\) 0 0
\(429\) −1.85236 + 21.3876i −0.0894326 + 1.03260i
\(430\) 0 0
\(431\) 1.43801i 0.0692664i 0.999400 + 0.0346332i \(0.0110263\pi\)
−0.999400 + 0.0346332i \(0.988974\pi\)
\(432\) 0 0
\(433\) 16.5018 0.793024 0.396512 0.918029i \(-0.370220\pi\)
0.396512 + 0.918029i \(0.370220\pi\)
\(434\) 0 0
\(435\) 14.5970i 0.699874i
\(436\) 0 0
\(437\) 28.0400i 1.34133i
\(438\) 0 0
\(439\) −10.1619 −0.485003 −0.242501 0.970151i \(-0.577968\pi\)
−0.242501 + 0.970151i \(0.577968\pi\)
\(440\) 0 0
\(441\) −1.90321 −0.0906291
\(442\) 0 0
\(443\) −3.20787 −0.152410 −0.0762052 0.997092i \(-0.524280\pi\)
−0.0762052 + 0.997092i \(0.524280\pi\)
\(444\) 0 0
\(445\) 17.2351 0.817020
\(446\) 0 0
\(447\) 32.1891i 1.52249i
\(448\) 0 0
\(449\) 18.4099i 0.868817i 0.900716 + 0.434409i \(0.143043\pi\)
−0.900716 + 0.434409i \(0.856957\pi\)
\(450\) 0 0
\(451\) −2.03164 −0.0956663
\(452\) 0 0
\(453\) 44.2306i 2.07814i
\(454\) 0 0
\(455\) 11.5462 + 1.00000i 0.541293 + 0.0468807i
\(456\) 0 0
\(457\) 3.40297i 0.159184i 0.996828 + 0.0795922i \(0.0253618\pi\)
−0.996828 + 0.0795922i \(0.974638\pi\)
\(458\) 0 0
\(459\) 8.72393 0.407198
\(460\) 0 0
\(461\) 17.5714i 0.818380i 0.912449 + 0.409190i \(0.134189\pi\)
−0.912449 + 0.409190i \(0.865811\pi\)
\(462\) 0 0
\(463\) 15.7714i 0.732959i 0.930426 + 0.366479i \(0.119437\pi\)
−0.930426 + 0.366479i \(0.880563\pi\)
\(464\) 0 0
\(465\) 41.5417 1.92645
\(466\) 0 0
\(467\) −3.76694 −0.174313 −0.0871567 0.996195i \(-0.527778\pi\)
−0.0871567 + 0.996195i \(0.527778\pi\)
\(468\) 0 0
\(469\) −0.428639 −0.0197927
\(470\) 0 0
\(471\) 16.3827 0.754875
\(472\) 0 0
\(473\) 23.6795i 1.08879i
\(474\) 0 0
\(475\) 45.5669i 2.09075i
\(476\) 0 0
\(477\) 4.80642 0.220071
\(478\) 0 0
\(479\) 12.1032i 0.553011i −0.961012 0.276506i \(-0.910824\pi\)
0.961012 0.276506i \(-0.0891764\pi\)
\(480\) 0 0
\(481\) 1.22369 14.1289i 0.0557954 0.644223i
\(482\) 0 0
\(483\) 7.26517i 0.330577i
\(484\) 0 0
\(485\) −30.9496 −1.40535
\(486\) 0 0
\(487\) 17.3778i 0.787463i 0.919226 + 0.393731i \(0.128816\pi\)
−0.919226 + 0.393731i \(0.871184\pi\)
\(488\) 0 0
\(489\) 5.15257i 0.233007i
\(490\) 0 0
\(491\) −19.3921 −0.875152 −0.437576 0.899181i \(-0.644163\pi\)
−0.437576 + 0.899181i \(0.644163\pi\)
\(492\) 0 0
\(493\) −7.36689 −0.331788
\(494\) 0 0
\(495\) −16.4494 −0.739345
\(496\) 0 0
\(497\) −8.98418 −0.402995
\(498\) 0 0
\(499\) 10.6702i 0.477662i 0.971061 + 0.238831i \(0.0767642\pi\)
−0.971061 + 0.238831i \(0.923236\pi\)
\(500\) 0 0
\(501\) 7.57781i 0.338552i
\(502\) 0 0
\(503\) 4.27655 0.190682 0.0953410 0.995445i \(-0.469606\pi\)
0.0953410 + 0.995445i \(0.469606\pi\)
\(504\) 0 0
\(505\) 44.0163i 1.95870i
\(506\) 0 0
\(507\) 28.3575 + 4.94914i 1.25940 + 0.219799i
\(508\) 0 0
\(509\) 33.0765i 1.46609i 0.680180 + 0.733046i \(0.261902\pi\)
−0.680180 + 0.733046i \(0.738098\pi\)
\(510\) 0 0
\(511\) −5.79060 −0.256161
\(512\) 0 0
\(513\) 20.7556i 0.916381i
\(514\) 0 0
\(515\) 39.5210i 1.74150i
\(516\) 0 0
\(517\) −5.06175 −0.222616
\(518\) 0 0
\(519\) −18.3225 −0.804268
\(520\) 0 0
\(521\) 24.3783 1.06803 0.534015 0.845475i \(-0.320682\pi\)
0.534015 + 0.845475i \(0.320682\pi\)
\(522\) 0 0
\(523\) −34.9403 −1.52783 −0.763915 0.645317i \(-0.776725\pi\)
−0.763915 + 0.645317i \(0.776725\pi\)
\(524\) 0 0
\(525\) 11.8064i 0.515275i
\(526\) 0 0
\(527\) 20.9654i 0.913269i
\(528\) 0 0
\(529\) −12.2351 −0.531959
\(530\) 0 0
\(531\) 13.9541i 0.605555i
\(532\) 0 0
\(533\) −0.235063 + 2.71408i −0.0101817 + 0.117560i
\(534\) 0 0
\(535\) 58.4657i 2.52769i
\(536\) 0 0
\(537\) −35.9289 −1.55045
\(538\) 0 0
\(539\) 2.68889i 0.115819i
\(540\) 0 0
\(541\) 30.4953i 1.31110i 0.755153 + 0.655548i \(0.227562\pi\)
−0.755153 + 0.655548i \(0.772438\pi\)
\(542\) 0 0
\(543\) 20.3827 0.874706
\(544\) 0 0
\(545\) −26.8780 −1.15133
\(546\) 0 0
\(547\) 10.0049 0.427780 0.213890 0.976858i \(-0.431387\pi\)
0.213890 + 0.976858i \(0.431387\pi\)
\(548\) 0 0
\(549\) 17.2257 0.735175
\(550\) 0 0
\(551\) 17.5270i 0.746674i
\(552\) 0 0
\(553\) 4.47949i 0.190487i
\(554\) 0 0
\(555\) 27.9956 1.18835
\(556\) 0 0
\(557\) 14.1936i 0.601401i −0.953719 0.300701i \(-0.902780\pi\)
0.953719 0.300701i \(-0.0972205\pi\)
\(558\) 0 0
\(559\) 31.6336 + 2.73975i 1.33796 + 0.115879i
\(560\) 0 0
\(561\) 21.3876i 0.902986i
\(562\) 0 0
\(563\) −21.3590 −0.900177 −0.450088 0.892984i \(-0.648607\pi\)
−0.450088 + 0.892984i \(0.648607\pi\)
\(564\) 0 0
\(565\) 27.2099i 1.14473i
\(566\) 0 0
\(567\) 11.0874i 0.465628i
\(568\) 0 0
\(569\) −34.2672 −1.43656 −0.718278 0.695757i \(-0.755069\pi\)
−0.718278 + 0.695757i \(0.755069\pi\)
\(570\) 0 0
\(571\) −37.6494 −1.57558 −0.787789 0.615945i \(-0.788774\pi\)
−0.787789 + 0.615945i \(0.788774\pi\)
\(572\) 0 0
\(573\) 14.7654 0.616834
\(574\) 0 0
\(575\) 17.4938 0.729541
\(576\) 0 0
\(577\) 28.3970i 1.18218i 0.806605 + 0.591091i \(0.201303\pi\)
−0.806605 + 0.591091i \(0.798697\pi\)
\(578\) 0 0
\(579\) 45.6227i 1.89601i
\(580\) 0 0
\(581\) 10.8272 0.449187
\(582\) 0 0
\(583\) 6.79060i 0.281238i
\(584\) 0 0
\(585\) −1.90321 + 21.9748i −0.0786881 + 0.908547i
\(586\) 0 0
\(587\) 6.23659i 0.257412i 0.991683 + 0.128706i \(0.0410823\pi\)
−0.991683 + 0.128706i \(0.958918\pi\)
\(588\) 0 0
\(589\) 49.8800 2.05527
\(590\) 0 0
\(591\) 18.5303i 0.762237i
\(592\) 0 0
\(593\) 17.5698i 0.721506i −0.932661 0.360753i \(-0.882520\pi\)
0.932661 0.360753i \(-0.117480\pi\)
\(594\) 0 0
\(595\) −11.5462 −0.473347
\(596\) 0 0
\(597\) −1.33185 −0.0545090
\(598\) 0 0
\(599\) −16.9813 −0.693836 −0.346918 0.937896i \(-0.612772\pi\)
−0.346918 + 0.937896i \(0.612772\pi\)
\(600\) 0 0
\(601\) −18.7052 −0.763001 −0.381500 0.924369i \(-0.624592\pi\)
−0.381500 + 0.924369i \(0.624592\pi\)
\(602\) 0 0
\(603\) 0.815792i 0.0332216i
\(604\) 0 0
\(605\) 12.1175i 0.492648i
\(606\) 0 0
\(607\) 10.3575 0.420399 0.210199 0.977659i \(-0.432589\pi\)
0.210199 + 0.977659i \(0.432589\pi\)
\(608\) 0 0
\(609\) 4.54125i 0.184021i
\(610\) 0 0
\(611\) −0.585651 + 6.76202i −0.0236929 + 0.273562i
\(612\) 0 0
\(613\) 7.02227i 0.283627i −0.989893 0.141814i \(-0.954707\pi\)
0.989893 0.141814i \(-0.0452933\pi\)
\(614\) 0 0
\(615\) −5.37778 −0.216853
\(616\) 0 0
\(617\) 29.9813i 1.20700i 0.797363 + 0.603500i \(0.206228\pi\)
−0.797363 + 0.603500i \(0.793772\pi\)
\(618\) 0 0
\(619\) 0.0285802i 0.00114874i 1.00000 0.000574368i \(0.000182827\pi\)
−1.00000 0.000574368i \(0.999817\pi\)
\(620\) 0 0
\(621\) 7.96836 0.319759
\(622\) 0 0
\(623\) −5.36196 −0.214823
\(624\) 0 0
\(625\) −23.2306 −0.929225
\(626\) 0 0
\(627\) −50.8845 −2.03213
\(628\) 0 0
\(629\) 14.1289i 0.563356i
\(630\) 0 0
\(631\) 12.1936i 0.485419i −0.970099 0.242709i \(-0.921964\pi\)
0.970099 0.242709i \(-0.0780361\pi\)
\(632\) 0 0
\(633\) 4.21432 0.167504
\(634\) 0 0
\(635\) 13.1383i 0.521377i
\(636\) 0 0
\(637\) −3.59210 0.311108i −0.142324 0.0123265i
\(638\) 0 0
\(639\) 17.0988i 0.676418i
\(640\) 0 0
\(641\) 2.82516 0.111587 0.0557935 0.998442i \(-0.482231\pi\)
0.0557935 + 0.998442i \(0.482231\pi\)
\(642\) 0 0
\(643\) 37.7275i 1.48783i 0.668276 + 0.743913i \(0.267032\pi\)
−0.668276 + 0.743913i \(0.732968\pi\)
\(644\) 0 0
\(645\) 62.6800i 2.46802i
\(646\) 0 0
\(647\) 12.3664 0.486174 0.243087 0.970005i \(-0.421840\pi\)
0.243087 + 0.970005i \(0.421840\pi\)
\(648\) 0 0
\(649\) −19.7146 −0.773864
\(650\) 0 0
\(651\) −12.9240 −0.506530
\(652\) 0 0
\(653\) −33.0005 −1.29141 −0.645704 0.763588i \(-0.723436\pi\)
−0.645704 + 0.763588i \(0.723436\pi\)
\(654\) 0 0
\(655\) 19.0923i 0.746000i
\(656\) 0 0
\(657\) 11.0207i 0.429960i
\(658\) 0 0
\(659\) −32.8118 −1.27817 −0.639084 0.769137i \(-0.720686\pi\)
−0.639084 + 0.769137i \(0.720686\pi\)
\(660\) 0 0
\(661\) 14.7067i 0.572025i 0.958226 + 0.286013i \(0.0923299\pi\)
−0.958226 + 0.286013i \(0.907670\pi\)
\(662\) 0 0
\(663\) −28.5718 2.47457i −1.10964 0.0961044i
\(664\) 0 0
\(665\) 27.4701i 1.06525i
\(666\) 0 0
\(667\) −6.72885 −0.260542
\(668\) 0 0
\(669\) 23.5462i 0.910348i
\(670\) 0 0
\(671\) 24.3368i 0.939511i
\(672\) 0 0
\(673\) −21.2908 −0.820702 −0.410351 0.911928i \(-0.634594\pi\)
−0.410351 + 0.911928i \(0.634594\pi\)
\(674\) 0 0
\(675\) 12.9491 0.498413
\(676\) 0 0
\(677\) −3.07160 −0.118051 −0.0590256 0.998256i \(-0.518799\pi\)
−0.0590256 + 0.998256i \(0.518799\pi\)
\(678\) 0 0
\(679\) 9.62867 0.369514
\(680\) 0 0
\(681\) 33.3274i 1.27711i
\(682\) 0 0
\(683\) 24.7971i 0.948833i −0.880301 0.474416i \(-0.842659\pi\)
0.880301 0.474416i \(-0.157341\pi\)
\(684\) 0 0
\(685\) 52.5926 2.00946
\(686\) 0 0
\(687\) 14.4701i 0.552070i
\(688\) 0 0
\(689\) 9.07160 + 0.785680i 0.345600 + 0.0299320i
\(690\) 0 0
\(691\) 27.0953i 1.03075i 0.856964 + 0.515376i \(0.172348\pi\)
−0.856964 + 0.515376i \(0.827652\pi\)
\(692\) 0 0
\(693\) 5.11753 0.194399
\(694\) 0 0
\(695\) 9.73975i 0.369450i
\(696\) 0 0
\(697\) 2.71408i 0.102803i
\(698\) 0 0
\(699\) 61.9101 2.34166
\(700\) 0 0
\(701\) −13.5205 −0.510662 −0.255331 0.966854i \(-0.582185\pi\)
−0.255331 + 0.966854i \(0.582185\pi\)
\(702\) 0 0
\(703\) 33.6149 1.26781
\(704\) 0 0
\(705\) −13.3985 −0.504618
\(706\) 0 0
\(707\) 13.6938i 0.515009i
\(708\) 0 0
\(709\) 50.9753i 1.91442i 0.289399 + 0.957209i \(0.406545\pi\)
−0.289399 + 0.957209i \(0.593455\pi\)
\(710\) 0 0
\(711\) 8.52543 0.319729
\(712\) 0 0
\(713\) 19.1497i 0.717160i
\(714\) 0 0
\(715\) −31.0464 2.68889i −1.16107 0.100559i
\(716\) 0 0
\(717\) 43.3590i 1.61927i
\(718\) 0 0
\(719\) 41.5417 1.54924 0.774622 0.632424i \(-0.217940\pi\)
0.774622 + 0.632424i \(0.217940\pi\)
\(720\) 0 0
\(721\) 12.2953i 0.457900i
\(722\) 0 0
\(723\) 29.5778i 1.10001i
\(724\) 0 0
\(725\) −10.9349 −0.406110
\(726\) 0 0
\(727\) −20.8988 −0.775092 −0.387546 0.921850i \(-0.626677\pi\)
−0.387546 + 0.921850i \(0.626677\pi\)
\(728\) 0 0
\(729\) −4.96836 −0.184013
\(730\) 0 0
\(731\) −31.6336 −1.17001
\(732\) 0 0
\(733\) 19.3575i 0.714986i 0.933916 + 0.357493i \(0.116368\pi\)
−0.933916 + 0.357493i \(0.883632\pi\)
\(734\) 0 0
\(735\) 7.11753i 0.262534i
\(736\) 0 0
\(737\) 1.15257 0.0424553
\(738\) 0 0
\(739\) 1.31111i 0.0482299i −0.999709 0.0241149i \(-0.992323\pi\)
0.999709 0.0241149i \(-0.00767677\pi\)
\(740\) 0 0
\(741\) −5.88739 + 67.9768i −0.216279 + 2.49719i
\(742\) 0 0
\(743\) 21.5210i 0.789528i 0.918783 + 0.394764i \(0.129174\pi\)
−0.918783 + 0.394764i \(0.870826\pi\)
\(744\) 0 0
\(745\) 46.7259 1.71191
\(746\) 0 0
\(747\) 20.6064i 0.753949i
\(748\) 0 0
\(749\) 18.1891i 0.664616i
\(750\) 0 0
\(751\) −16.3176 −0.595436 −0.297718 0.954654i \(-0.596226\pi\)
−0.297718 + 0.954654i \(0.596226\pi\)
\(752\) 0 0
\(753\) 7.30021 0.266034
\(754\) 0 0
\(755\) 64.2054 2.33667
\(756\) 0 0
\(757\) −18.7462 −0.681342 −0.340671 0.940183i \(-0.610654\pi\)
−0.340671 + 0.940183i \(0.610654\pi\)
\(758\) 0 0
\(759\) 19.5353i 0.709085i
\(760\) 0 0
\(761\) 10.2968i 0.373259i 0.982430 + 0.186630i \(0.0597564\pi\)
−0.982430 + 0.186630i \(0.940244\pi\)
\(762\) 0 0
\(763\) 8.36196 0.302723
\(764\) 0 0
\(765\) 21.9748i 0.794501i
\(766\) 0 0
\(767\) −2.28100 + 26.3368i −0.0823620 + 0.950966i
\(768\) 0 0
\(769\) 9.36641i 0.337761i 0.985637 + 0.168881i \(0.0540153\pi\)
−0.985637 + 0.168881i \(0.945985\pi\)
\(770\) 0 0
\(771\) 52.4657 1.88951
\(772\) 0 0
\(773\) 3.71456i 0.133603i −0.997766 0.0668017i \(-0.978721\pi\)
0.997766 0.0668017i \(-0.0212795\pi\)
\(774\) 0 0
\(775\) 31.1195i 1.11785i
\(776\) 0 0
\(777\) −8.70964 −0.312456
\(778\) 0 0
\(779\) −6.45722 −0.231354
\(780\) 0 0
\(781\) 24.1575 0.864423
\(782\) 0 0
\(783\) −4.98079 −0.177999
\(784\) 0 0
\(785\) 23.7812i 0.848789i
\(786\) 0 0
\(787\) 6.23659i 0.222311i 0.993803 + 0.111155i \(0.0354551\pi\)
−0.993803 + 0.111155i \(0.964545\pi\)
\(788\) 0 0
\(789\) −22.1225 −0.787580
\(790\) 0 0
\(791\) 8.46520i 0.300988i
\(792\) 0 0
\(793\) 32.5116 + 2.81579i 1.15452 + 0.0999917i
\(794\) 0 0
\(795\) 17.9748i 0.637501i
\(796\) 0 0
\(797\) 40.0701 1.41935 0.709677 0.704527i \(-0.248841\pi\)
0.709677 + 0.704527i \(0.248841\pi\)
\(798\) 0 0
\(799\) 6.76202i 0.239223i
\(800\) 0 0
\(801\) 10.2050i 0.360574i
\(802\) 0 0
\(803\) 15.5703 0.549464
\(804\) 0 0
\(805\) −10.5462 −0.371704
\(806\) 0 0
\(807\) −40.3082 −1.41892
\(808\) 0 0
\(809\) −2.57136 −0.0904042 −0.0452021 0.998978i \(-0.514393\pi\)
−0.0452021 + 0.998978i \(0.514393\pi\)
\(810\) 0 0
\(811\) 28.3654i 0.996042i 0.867165 + 0.498021i \(0.165940\pi\)
−0.867165 + 0.498021i \(0.834060\pi\)
\(812\) 0 0
\(813\) 53.5308i 1.87741i
\(814\) 0 0
\(815\) −7.47949 −0.261995
\(816\) 0 0
\(817\) 75.2612i 2.63306i
\(818\) 0 0
\(819\) 0.592104 6.83654i 0.0206898 0.238888i
\(820\) 0 0
\(821\) 31.7846i 1.10929i −0.832087 0.554646i \(-0.812854\pi\)
0.832087 0.554646i \(-0.187146\pi\)
\(822\) 0 0
\(823\) 30.9131 1.07756 0.538781 0.842446i \(-0.318885\pi\)
0.538781 + 0.842446i \(0.318885\pi\)
\(824\) 0 0
\(825\) 31.7462i 1.10526i
\(826\) 0 0
\(827\) 49.7560i 1.73019i 0.501610 + 0.865094i \(0.332741\pi\)
−0.501610 + 0.865094i \(0.667259\pi\)
\(828\) 0 0
\(829\) 19.9190 0.691817 0.345908 0.938268i \(-0.387571\pi\)
0.345908 + 0.938268i \(0.387571\pi\)
\(830\) 0 0
\(831\) −3.75404 −0.130226
\(832\) 0 0
\(833\) 3.59210 0.124459
\(834\) 0 0
\(835\) 11.0000 0.380671
\(836\) 0 0
\(837\) 14.1748i 0.489954i
\(838\) 0 0
\(839\) 11.5625i 0.399181i 0.979879 + 0.199590i \(0.0639611\pi\)
−0.979879 + 0.199590i \(0.936039\pi\)
\(840\) 0 0
\(841\) −24.7940 −0.854965
\(842\) 0 0
\(843\) 25.7921i 0.888328i
\(844\) 0 0
\(845\) −7.18421 + 41.1639i −0.247144 + 1.41608i
\(846\) 0 0
\(847\) 3.76986i 0.129534i
\(848\) 0 0
\(849\) 26.8671 0.922077
\(850\) 0 0
\(851\) 12.9052i 0.442385i
\(852\) 0 0
\(853\) 1.74467i 0.0597363i −0.999554 0.0298682i \(-0.990491\pi\)
0.999554 0.0298682i \(-0.00950875\pi\)
\(854\) 0 0
\(855\) −52.2815 −1.78799
\(856\) 0 0
\(857\) 42.3368 1.44620 0.723098 0.690745i \(-0.242717\pi\)
0.723098 + 0.690745i \(0.242717\pi\)
\(858\) 0 0
\(859\) 5.37778 0.183488 0.0917438 0.995783i \(-0.470756\pi\)
0.0917438 + 0.995783i \(0.470756\pi\)
\(860\) 0 0
\(861\) 1.67307 0.0570181
\(862\) 0 0
\(863\) 15.4291i 0.525213i −0.964903 0.262607i \(-0.915418\pi\)
0.964903 0.262607i \(-0.0845821\pi\)
\(864\) 0 0
\(865\) 26.5970i 0.904326i
\(866\) 0 0
\(867\) −9.07160 −0.308088
\(868\) 0 0
\(869\) 12.0449i 0.408595i
\(870\) 0 0
\(871\) 0.133353 1.53972i 0.00451850 0.0521713i
\(872\) 0 0
\(873\) 18.3254i 0.620221i
\(874\) 0 0
\(875\) −1.06668 −0.0360602
\(876\) 0 0
\(877\) 38.5181i 1.30066i 0.759651 + 0.650331i \(0.225370\pi\)
−0.759651 + 0.650331i \(0.774630\pi\)
\(878\) 0 0
\(879\) 25.3624i 0.855454i
\(880\) 0 0
\(881\) 41.7373 1.40617 0.703083 0.711108i \(-0.251806\pi\)
0.703083 + 0.711108i \(0.251806\pi\)
\(882\) 0 0
\(883\) 52.8439 1.77834 0.889170 0.457577i \(-0.151283\pi\)
0.889170 + 0.457577i \(0.151283\pi\)
\(884\) 0 0
\(885\) −52.1847 −1.75417
\(886\) 0 0
\(887\) −8.99063 −0.301876 −0.150938 0.988543i \(-0.548229\pi\)
−0.150938 + 0.988543i \(0.548229\pi\)
\(888\) 0 0
\(889\) 4.08742i 0.137088i
\(890\) 0 0
\(891\) 29.8129i 0.998769i
\(892\) 0 0
\(893\) −16.0879 −0.538361
\(894\) 0 0
\(895\) 52.1546i 1.74334i
\(896\) 0 0
\(897\) −26.0973 2.26025i −0.871362 0.0754676i
\(898\) 0 0
\(899\) 11.9699i 0.399218i
\(900\) 0 0
\(901\) −9.07160 −0.302219
\(902\) 0 0
\(903\) 19.5002i 0.648927i
\(904\) 0 0
\(905\) 29.5877i 0.983527i
\(906\) 0 0
\(907\) −20.7003 −0.687341 −0.343671 0.939090i \(-0.611670\pi\)
−0.343671 + 0.939090i \(0.611670\pi\)
\(908\) 0 0
\(909\) −26.0622 −0.864430
\(910\) 0 0
\(911\) −29.8988 −0.990590 −0.495295 0.868725i \(-0.664940\pi\)
−0.495295 + 0.868725i \(0.664940\pi\)
\(912\) 0 0
\(913\) −29.1131 −0.963503
\(914\) 0 0
\(915\) 64.4197i 2.12965i
\(916\) 0 0
\(917\) 5.93978i 0.196149i
\(918\) 0 0
\(919\) −38.5847 −1.27279 −0.636397 0.771362i \(-0.719576\pi\)
−0.636397 + 0.771362i \(0.719576\pi\)
\(920\) 0 0
\(921\) 8.79060i 0.289660i
\(922\) 0 0
\(923\) 2.79505 32.2721i 0.0920001 1.06225i
\(924\) 0 0
\(925\) 20.9719i 0.689552i
\(926\) 0 0
\(927\) 23.4005 0.768574
\(928\) 0 0
\(929\) 3.25581i 0.106820i 0.998573 + 0.0534098i \(0.0170090\pi\)
−0.998573 + 0.0534098i \(0.982991\pi\)
\(930\) 0 0
\(931\) 8.54617i 0.280089i
\(932\) 0 0
\(933\) 60.5575 1.98257
\(934\) 0 0
\(935\) 31.0464 1.01533
\(936\) 0 0
\(937\) −11.6840 −0.381699 −0.190849 0.981619i \(-0.561124\pi\)
−0.190849 + 0.981619i \(0.561124\pi\)
\(938\) 0 0
\(939\) −42.3007 −1.38043
\(940\) 0 0
\(941\) 41.9699i 1.36818i −0.729398 0.684090i \(-0.760200\pi\)
0.729398 0.684090i \(-0.239800\pi\)
\(942\) 0 0
\(943\) 2.47902i 0.0807279i
\(944\) 0 0
\(945\) −7.80642 −0.253943
\(946\) 0 0
\(947\) 20.3555i 0.661465i −0.943725 0.330733i \(-0.892704\pi\)
0.943725 0.330733i \(-0.107296\pi\)
\(948\) 0 0
\(949\) 1.80150 20.8004i 0.0584792 0.675211i
\(950\) 0 0
\(951\) 21.9398i 0.711446i
\(952\) 0 0
\(953\) 30.5496 0.989597 0.494799 0.869008i \(-0.335242\pi\)
0.494799 + 0.869008i \(0.335242\pi\)
\(954\) 0 0
\(955\) 21.4336i 0.693574i
\(956\) 0 0
\(957\) 12.2109i 0.394723i
\(958\) 0 0
\(959\) −16.3620 −0.528355
\(960\) 0 0
\(961\) −3.06515 −0.0988757
\(962\) 0 0
\(963\) 34.6178 1.11554
\(964\) 0 0
\(965\) 66.2262 2.13190
\(966\) 0 0
\(967\) 54.4548i 1.75115i −0.483084 0.875574i \(-0.660484\pi\)
0.483084 0.875574i \(-0.339516\pi\)
\(968\) 0 0
\(969\) 67.9768i 2.18373i
\(970\) 0 0
\(971\) 54.6035 1.75231 0.876155 0.482030i \(-0.160101\pi\)
0.876155 + 0.482030i \(0.160101\pi\)
\(972\) 0 0
\(973\) 3.03011i 0.0971409i
\(974\) 0 0
\(975\) −42.4099 3.67307i −1.35820 0.117632i
\(976\) 0 0
\(977\) 32.6474i 1.04448i 0.852798 + 0.522242i \(0.174904\pi\)
−0.852798 + 0.522242i \(0.825096\pi\)
\(978\) 0 0
\(979\) 14.4177 0.460793
\(980\) 0 0
\(981\) 15.9146i 0.508114i
\(982\) 0 0
\(983\) 27.5052i 0.877278i −0.898663 0.438639i \(-0.855461\pi\)
0.898663 0.438639i \(-0.144539\pi\)
\(984\) 0 0
\(985\) 26.8988 0.857066
\(986\) 0 0
\(987\) 4.16839 0.132681
\(988\) 0 0
\(989\) −28.8938 −0.918771
\(990\) 0 0
\(991\) 6.29390 0.199932 0.0999662 0.994991i \(-0.468127\pi\)
0.0999662 + 0.994991i \(0.468127\pi\)
\(992\) 0 0
\(993\) 51.8578i 1.64566i
\(994\) 0 0
\(995\) 1.93332i 0.0612905i
\(996\) 0 0
\(997\) −20.8702 −0.660965 −0.330483 0.943812i \(-0.607212\pi\)
−0.330483 + 0.943812i \(0.607212\pi\)
\(998\) 0 0
\(999\) 9.55262i 0.302232i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1456.2.k.c.337.6 6
4.3 odd 2 91.2.c.a.64.4 yes 6
12.11 even 2 819.2.c.b.64.3 6
13.12 even 2 inner 1456.2.k.c.337.5 6
28.3 even 6 637.2.r.d.324.3 12
28.11 odd 6 637.2.r.e.324.3 12
28.19 even 6 637.2.r.d.116.4 12
28.23 odd 6 637.2.r.e.116.4 12
28.27 even 2 637.2.c.d.246.4 6
52.31 even 4 1183.2.a.j.1.2 3
52.47 even 4 1183.2.a.h.1.2 3
52.51 odd 2 91.2.c.a.64.3 6
156.155 even 2 819.2.c.b.64.4 6
364.51 odd 6 637.2.r.e.116.3 12
364.83 odd 4 8281.2.a.bi.1.2 3
364.103 even 6 637.2.r.d.116.3 12
364.207 odd 6 637.2.r.e.324.4 12
364.307 odd 4 8281.2.a.be.1.2 3
364.311 even 6 637.2.r.d.324.4 12
364.363 even 2 637.2.c.d.246.3 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
91.2.c.a.64.3 6 52.51 odd 2
91.2.c.a.64.4 yes 6 4.3 odd 2
637.2.c.d.246.3 6 364.363 even 2
637.2.c.d.246.4 6 28.27 even 2
637.2.r.d.116.3 12 364.103 even 6
637.2.r.d.116.4 12 28.19 even 6
637.2.r.d.324.3 12 28.3 even 6
637.2.r.d.324.4 12 364.311 even 6
637.2.r.e.116.3 12 364.51 odd 6
637.2.r.e.116.4 12 28.23 odd 6
637.2.r.e.324.3 12 28.11 odd 6
637.2.r.e.324.4 12 364.207 odd 6
819.2.c.b.64.3 6 12.11 even 2
819.2.c.b.64.4 6 156.155 even 2
1183.2.a.h.1.2 3 52.47 even 4
1183.2.a.j.1.2 3 52.31 even 4
1456.2.k.c.337.5 6 13.12 even 2 inner
1456.2.k.c.337.6 6 1.1 even 1 trivial
8281.2.a.be.1.2 3 364.307 odd 4
8281.2.a.bi.1.2 3 364.83 odd 4