Properties

Label 2-1425-5.4-c1-0-19
Degree $2$
Conductor $1425$
Sign $0.447 - 0.894i$
Analytic cond. $11.3786$
Root an. cond. $3.37323$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.523i·2-s + i·3-s + 1.72·4-s + 0.523·6-s + 3.20i·7-s − 1.95i·8-s − 9-s + 2.20·11-s + 1.72i·12-s + 3.04i·13-s + 1.67·14-s + 2.42·16-s + 0.523i·18-s − 19-s − 3.20·21-s − 1.15i·22-s + ⋯
L(s)  = 1  − 0.370i·2-s + 0.577i·3-s + 0.862·4-s + 0.213·6-s + 1.21i·7-s − 0.690i·8-s − 0.333·9-s + 0.663·11-s + 0.498i·12-s + 0.845i·13-s + 0.448·14-s + 0.607·16-s + 0.123i·18-s − 0.229·19-s − 0.698·21-s − 0.245i·22-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1425 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.447 - 0.894i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1425 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.447 - 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1425\)    =    \(3 \cdot 5^{2} \cdot 19\)
Sign: $0.447 - 0.894i$
Analytic conductor: \(11.3786\)
Root analytic conductor: \(3.37323\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1425} (799, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1425,\ (\ :1/2),\ 0.447 - 0.894i)\)

Particular Values

\(L(1)\) \(\approx\) \(2.064059817\)
\(L(\frac12)\) \(\approx\) \(2.064059817\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - iT \)
5 \( 1 \)
19 \( 1 + T \)
good2 \( 1 + 0.523iT - 2T^{2} \)
7 \( 1 - 3.20iT - 7T^{2} \)
11 \( 1 - 2.20T + 11T^{2} \)
13 \( 1 - 3.04iT - 13T^{2} \)
17 \( 1 - 17T^{2} \)
23 \( 1 - 3.24iT - 23T^{2} \)
29 \( 1 + 3T + 29T^{2} \)
31 \( 1 + 1.24T + 31T^{2} \)
37 \( 1 - 3.45iT - 37T^{2} \)
41 \( 1 - 8.55T + 41T^{2} \)
43 \( 1 - 8iT - 43T^{2} \)
47 \( 1 + 3.35iT - 47T^{2} \)
53 \( 1 - 0.904iT - 53T^{2} \)
59 \( 1 + 11.2T + 59T^{2} \)
61 \( 1 - 3.40T + 61T^{2} \)
67 \( 1 - 2.29iT - 67T^{2} \)
71 \( 1 - 7.29T + 71T^{2} \)
73 \( 1 - 1.09iT - 73T^{2} \)
79 \( 1 + 13.5T + 79T^{2} \)
83 \( 1 + 8.20iT - 83T^{2} \)
89 \( 1 - 7.40T + 89T^{2} \)
97 \( 1 - 7.14iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.502576837712285360049322334009, −9.224164814843266027291334522799, −8.197958488196315566786080528101, −7.18294604831151627345989608878, −6.26783308448763423894174435933, −5.68614273842355392757719915780, −4.50501872132703961025981465027, −3.51478549290231443997373577788, −2.56050305336771329513769182876, −1.60738563326235157121508974625, 0.833865326968442660366497955383, 2.05553751563134065071683262755, 3.22879120105861263629041757213, 4.24840154752848861300659770185, 5.52787503088387811870506868085, 6.29555378198488778435253578026, 7.06471444061845122381404946754, 7.56796198863814830952406323321, 8.296143607539727032434457488445, 9.330111492972477568199195718120

Graph of the $Z$-function along the critical line