Properties

Label 12-1372e6-1.1-c1e6-0-0
Degree $12$
Conductor $6.670\times 10^{18}$
Sign $1$
Analytic cond. $1.72896\times 10^{6}$
Root an. cond. $3.30990$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 8·9-s + 10·11-s + 18·23-s − 10·25-s + 6·29-s + 22·37-s + 18·43-s + 18·53-s + 42·67-s + 70·71-s + 6·79-s + 25·81-s − 80·99-s + 34·107-s − 34·109-s − 34·113-s − 3·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 66·169-s + ⋯
L(s)  = 1  − 8/3·9-s + 3.01·11-s + 3.75·23-s − 2·25-s + 1.11·29-s + 3.61·37-s + 2.74·43-s + 2.47·53-s + 5.13·67-s + 8.30·71-s + 0.675·79-s + 25/9·81-s − 8.04·99-s + 3.28·107-s − 3.25·109-s − 3.19·113-s − 0.272·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 5.07·169-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{12} \cdot 7^{18}\right)^{s/2} \, \Gamma_{\C}(s)^{6} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{12} \cdot 7^{18}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{6} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(12\)
Conductor: \(2^{12} \cdot 7^{18}\)
Sign: $1$
Analytic conductor: \(1.72896\times 10^{6}\)
Root analytic conductor: \(3.30990\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((12,\ 2^{12} \cdot 7^{18} ,\ ( \ : [1/2]^{6} ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(10.99744928\)
\(L(\frac12)\) \(\approx\) \(10.99744928\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 \)
good3 \( 1 + 8 T^{2} + 13 p T^{4} + 136 T^{6} + 13 p^{3} T^{8} + 8 p^{4} T^{10} + p^{6} T^{12} \)
5 \( 1 + 2 p T^{2} + 43 T^{4} + 172 T^{6} + 43 p^{2} T^{8} + 2 p^{5} T^{10} + p^{6} T^{12} \)
11 \( ( 1 - 5 T + 39 T^{2} - 111 T^{3} + 39 p T^{4} - 5 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
13 \( 1 + 66 T^{2} + 1931 T^{4} + 32284 T^{6} + 1931 p^{2} T^{8} + 66 p^{4} T^{10} + p^{6} T^{12} \)
17 \( 1 + 4 p T^{2} + 2063 T^{4} + 40656 T^{6} + 2063 p^{2} T^{8} + 4 p^{5} T^{10} + p^{6} T^{12} \)
19 \( 1 + 62 T^{2} + 2075 T^{4} + 46452 T^{6} + 2075 p^{2} T^{8} + 62 p^{4} T^{10} + p^{6} T^{12} \)
23 \( ( 1 - 9 T + 89 T^{2} - 413 T^{3} + 89 p T^{4} - 9 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
29 \( ( 1 - 3 T + 41 T^{2} - 77 T^{3} + 41 p T^{4} - 3 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
31 \( 1 + 102 T^{2} + 5763 T^{4} + 220452 T^{6} + 5763 p^{2} T^{8} + 102 p^{4} T^{10} + p^{6} T^{12} \)
37 \( ( 1 - 11 T + 121 T^{2} - 785 T^{3} + 121 p T^{4} - 11 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
41 \( 1 + 68 T^{2} + 4783 T^{4} + 172400 T^{6} + 4783 p^{2} T^{8} + 68 p^{4} T^{10} + p^{6} T^{12} \)
43 \( ( 1 - 9 T + 107 T^{2} - 703 T^{3} + 107 p T^{4} - 9 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
47 \( 1 + 102 T^{2} + 8723 T^{4} + 447940 T^{6} + 8723 p^{2} T^{8} + 102 p^{4} T^{10} + p^{6} T^{12} \)
53 \( ( 1 - 9 T + 137 T^{2} - 785 T^{3} + 137 p T^{4} - 9 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
59 \( 1 + 104 T^{2} + 7319 T^{4} + 321864 T^{6} + 7319 p^{2} T^{8} + 104 p^{4} T^{10} + p^{6} T^{12} \)
61 \( ( 1 - 40 T^{2} + p^{2} T^{4} )^{3} \)
67 \( ( 1 - 21 T + 327 T^{2} - 3003 T^{3} + 327 p T^{4} - 21 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
71 \( ( 1 - 35 T + 605 T^{2} - 6349 T^{3} + 605 p T^{4} - 35 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
73 \( 1 - 160 T^{2} + 16755 T^{4} - 1307968 T^{6} + 16755 p^{2} T^{8} - 160 p^{4} T^{10} + p^{6} T^{12} \)
79 \( ( 1 - 3 T + 191 T^{2} - 377 T^{3} + 191 p T^{4} - 3 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
83 \( 1 + 94 T^{2} + 12907 T^{4} + 1359316 T^{6} + 12907 p^{2} T^{8} + 94 p^{4} T^{10} + p^{6} T^{12} \)
89 \( 1 + 272 T^{2} + 42899 T^{4} + 4696608 T^{6} + 42899 p^{2} T^{8} + 272 p^{4} T^{10} + p^{6} T^{12} \)
97 \( 1 + 156 T^{2} + 6239 T^{4} - 161984 T^{6} + 6239 p^{2} T^{8} + 156 p^{4} T^{10} + p^{6} T^{12} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{12} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−5.29947248251644297645542804663, −4.97103439994820299319535900659, −4.62789734904495232310055880556, −4.57086243315683524382290419663, −4.38543875638402465666438387929, −4.15516136819730195616206554458, −4.02487222749628480877460871885, −3.78992273020447975579273851059, −3.78477323484975233790279753817, −3.70822966161787314479386544860, −3.40898688538079370097719369606, −3.25938192070564262017549896925, −3.22056843918062837648030010800, −2.60652924774461467992502161592, −2.53174468656135967231162991089, −2.51485471534760412396797865373, −2.36368958617679596055206082747, −2.33668314519768920898049135987, −2.18558702243811896530820776559, −1.36633536197692454933587495219, −1.32550265073589511338380538925, −1.13782917304358289711655046381, −0.799227404715373828270647488053, −0.68012540842431608522374918118, −0.58540457290451395878214399452, 0.58540457290451395878214399452, 0.68012540842431608522374918118, 0.799227404715373828270647488053, 1.13782917304358289711655046381, 1.32550265073589511338380538925, 1.36633536197692454933587495219, 2.18558702243811896530820776559, 2.33668314519768920898049135987, 2.36368958617679596055206082747, 2.51485471534760412396797865373, 2.53174468656135967231162991089, 2.60652924774461467992502161592, 3.22056843918062837648030010800, 3.25938192070564262017549896925, 3.40898688538079370097719369606, 3.70822966161787314479386544860, 3.78477323484975233790279753817, 3.78992273020447975579273851059, 4.02487222749628480877460871885, 4.15516136819730195616206554458, 4.38543875638402465666438387929, 4.57086243315683524382290419663, 4.62789734904495232310055880556, 4.97103439994820299319535900659, 5.29947248251644297645542804663

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.