L(s) = 1 | + (−0.250 − 0.250i)3-s + (−1.28 + 1.82i)5-s + (3.34 − 3.34i)7-s − 2.87i·9-s + 5.02i·11-s + (2.21 − 2.21i)13-s + (0.781 − 0.135i)15-s + (−0.707 − 0.707i)17-s + 1.41·19-s − 1.67·21-s + (−2.70 − 2.70i)23-s + (−1.68 − 4.70i)25-s + (−1.47 + 1.47i)27-s − 0.724i·29-s + 2.60i·31-s + ⋯ |
L(s) = 1 | + (−0.144 − 0.144i)3-s + (−0.575 + 0.817i)5-s + (1.26 − 1.26i)7-s − 0.958i·9-s + 1.51i·11-s + (0.615 − 0.615i)13-s + (0.201 − 0.0350i)15-s + (−0.171 − 0.171i)17-s + 0.324·19-s − 0.366·21-s + (−0.564 − 0.564i)23-s + (−0.337 − 0.941i)25-s + (−0.283 + 0.283i)27-s − 0.134i·29-s + 0.467i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1360 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.663 + 0.748i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1360 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.663 + 0.748i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.595065370\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.595065370\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (1.28 - 1.82i)T \) |
| 17 | \( 1 + (0.707 + 0.707i)T \) |
good | 3 | \( 1 + (0.250 + 0.250i)T + 3iT^{2} \) |
| 7 | \( 1 + (-3.34 + 3.34i)T - 7iT^{2} \) |
| 11 | \( 1 - 5.02iT - 11T^{2} \) |
| 13 | \( 1 + (-2.21 + 2.21i)T - 13iT^{2} \) |
| 19 | \( 1 - 1.41T + 19T^{2} \) |
| 23 | \( 1 + (2.70 + 2.70i)T + 23iT^{2} \) |
| 29 | \( 1 + 0.724iT - 29T^{2} \) |
| 31 | \( 1 - 2.60iT - 31T^{2} \) |
| 37 | \( 1 + (-0.307 - 0.307i)T + 37iT^{2} \) |
| 41 | \( 1 - 9.95T + 41T^{2} \) |
| 43 | \( 1 + (6.48 + 6.48i)T + 43iT^{2} \) |
| 47 | \( 1 + (-2.45 + 2.45i)T - 47iT^{2} \) |
| 53 | \( 1 + (-8.16 + 8.16i)T - 53iT^{2} \) |
| 59 | \( 1 + 2.80T + 59T^{2} \) |
| 61 | \( 1 - 4.65T + 61T^{2} \) |
| 67 | \( 1 + (-4.16 + 4.16i)T - 67iT^{2} \) |
| 71 | \( 1 - 10.2iT - 71T^{2} \) |
| 73 | \( 1 + (-9.59 + 9.59i)T - 73iT^{2} \) |
| 79 | \( 1 - 10.2T + 79T^{2} \) |
| 83 | \( 1 + (-7.99 - 7.99i)T + 83iT^{2} \) |
| 89 | \( 1 + 12.0iT - 89T^{2} \) |
| 97 | \( 1 + (3.69 + 3.69i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.699586358771360947796905384624, −8.456071031885379360224549999863, −7.70865259624640059431208776121, −7.11274939992064240582590449365, −6.49691414096656204943500619288, −5.16134787850147012468069042719, −4.19351723934352797404228305795, −3.62885319872738728507182757905, −2.12851798265056054237026186373, −0.77626494668985546383966249194,
1.26796314758166878924183649661, 2.40995983035232759704225029393, 3.81710322964896774187531319884, 4.74881999131097527431314057391, 5.49198631972684449371593898539, 6.06013575007805930979307554542, 7.68935446280124338761874385185, 8.178520628597587963803755194085, 8.742527939032547424807126177534, 9.414769826138553027769569786181