L(s) = 1 | + (−0.250 + 0.250i)3-s + (−1.28 − 1.82i)5-s + (3.34 + 3.34i)7-s + 2.87i·9-s − 5.02i·11-s + (2.21 + 2.21i)13-s + (0.781 + 0.135i)15-s + (−0.707 + 0.707i)17-s + 1.41·19-s − 1.67·21-s + (−2.70 + 2.70i)23-s + (−1.68 + 4.70i)25-s + (−1.47 − 1.47i)27-s + 0.724i·29-s − 2.60i·31-s + ⋯ |
L(s) = 1 | + (−0.144 + 0.144i)3-s + (−0.575 − 0.817i)5-s + (1.26 + 1.26i)7-s + 0.958i·9-s − 1.51i·11-s + (0.615 + 0.615i)13-s + (0.201 + 0.0350i)15-s + (−0.171 + 0.171i)17-s + 0.324·19-s − 0.366·21-s + (−0.564 + 0.564i)23-s + (−0.337 + 0.941i)25-s + (−0.283 − 0.283i)27-s + 0.134i·29-s − 0.467i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1360 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.663 - 0.748i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1360 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.663 - 0.748i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.595065370\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.595065370\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (1.28 + 1.82i)T \) |
| 17 | \( 1 + (0.707 - 0.707i)T \) |
good | 3 | \( 1 + (0.250 - 0.250i)T - 3iT^{2} \) |
| 7 | \( 1 + (-3.34 - 3.34i)T + 7iT^{2} \) |
| 11 | \( 1 + 5.02iT - 11T^{2} \) |
| 13 | \( 1 + (-2.21 - 2.21i)T + 13iT^{2} \) |
| 19 | \( 1 - 1.41T + 19T^{2} \) |
| 23 | \( 1 + (2.70 - 2.70i)T - 23iT^{2} \) |
| 29 | \( 1 - 0.724iT - 29T^{2} \) |
| 31 | \( 1 + 2.60iT - 31T^{2} \) |
| 37 | \( 1 + (-0.307 + 0.307i)T - 37iT^{2} \) |
| 41 | \( 1 - 9.95T + 41T^{2} \) |
| 43 | \( 1 + (6.48 - 6.48i)T - 43iT^{2} \) |
| 47 | \( 1 + (-2.45 - 2.45i)T + 47iT^{2} \) |
| 53 | \( 1 + (-8.16 - 8.16i)T + 53iT^{2} \) |
| 59 | \( 1 + 2.80T + 59T^{2} \) |
| 61 | \( 1 - 4.65T + 61T^{2} \) |
| 67 | \( 1 + (-4.16 - 4.16i)T + 67iT^{2} \) |
| 71 | \( 1 + 10.2iT - 71T^{2} \) |
| 73 | \( 1 + (-9.59 - 9.59i)T + 73iT^{2} \) |
| 79 | \( 1 - 10.2T + 79T^{2} \) |
| 83 | \( 1 + (-7.99 + 7.99i)T - 83iT^{2} \) |
| 89 | \( 1 - 12.0iT - 89T^{2} \) |
| 97 | \( 1 + (3.69 - 3.69i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.414769826138553027769569786181, −8.742527939032547424807126177534, −8.178520628597587963803755194085, −7.68935446280124338761874385185, −6.06013575007805930979307554542, −5.49198631972684449371593898539, −4.74881999131097527431314057391, −3.81710322964896774187531319884, −2.40995983035232759704225029393, −1.26796314758166878924183649661,
0.77626494668985546383966249194, 2.12851798265056054237026186373, 3.62885319872738728507182757905, 4.19351723934352797404228305795, 5.16134787850147012468069042719, 6.49691414096656204943500619288, 7.11274939992064240582590449365, 7.70865259624640059431208776121, 8.456071031885379360224549999863, 9.699586358771360947796905384624