Properties

Label 16-1352e8-1.1-c1e8-0-1
Degree $16$
Conductor $1.116\times 10^{25}$
Sign $1$
Analytic cond. $1.84514\times 10^{8}$
Root an. cond. $3.28569$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s + 6·7-s + 5·9-s − 6·11-s + 6·19-s + 12·21-s + 2·23-s + 10·25-s + 2·27-s − 8·29-s − 12·33-s + 24·37-s − 12·41-s + 6·43-s + 5·49-s + 20·53-s + 12·57-s − 18·59-s − 4·61-s + 30·63-s + 42·67-s + 4·69-s + 54·71-s + 20·75-s − 36·77-s + 16·79-s − 16·87-s + ⋯
L(s)  = 1  + 1.15·3-s + 2.26·7-s + 5/3·9-s − 1.80·11-s + 1.37·19-s + 2.61·21-s + 0.417·23-s + 2·25-s + 0.384·27-s − 1.48·29-s − 2.08·33-s + 3.94·37-s − 1.87·41-s + 0.914·43-s + 5/7·49-s + 2.74·53-s + 1.58·57-s − 2.34·59-s − 0.512·61-s + 3.77·63-s + 5.13·67-s + 0.481·69-s + 6.40·71-s + 2.30·75-s − 4.10·77-s + 1.80·79-s − 1.71·87-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{24} \cdot 13^{16}\right)^{s/2} \, \Gamma_{\C}(s)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{24} \cdot 13^{16}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(16\)
Conductor: \(2^{24} \cdot 13^{16}\)
Sign: $1$
Analytic conductor: \(1.84514\times 10^{8}\)
Root analytic conductor: \(3.28569\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((16,\ 2^{24} \cdot 13^{16} ,\ ( \ : [1/2]^{8} ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(2.439843686\)
\(L(\frac12)\) \(\approx\) \(2.439843686\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
13 \( 1 \)
good3 \( ( 1 - 4 T + 5 T^{2} + 4 T^{3} - 20 T^{4} + 4 p T^{5} + 5 p^{2} T^{6} - 4 p^{3} T^{7} + p^{4} T^{8} )( 1 + 2 T + 2 T^{2} + 4 T^{3} + 7 T^{4} + 4 p T^{5} + 2 p^{2} T^{6} + 2 p^{3} T^{7} + p^{4} T^{8} ) \)
5 \( 1 - 2 p T^{2} + 21 p T^{4} - 698 T^{6} + 4004 T^{8} - 698 p^{2} T^{10} + 21 p^{5} T^{12} - 2 p^{7} T^{14} + p^{8} T^{16} \)
7 \( 1 - 6 T + 31 T^{2} - 114 T^{3} + 333 T^{4} - 648 T^{5} + 134 p T^{6} + 300 T^{7} - 3022 T^{8} + 300 p T^{9} + 134 p^{3} T^{10} - 648 p^{3} T^{11} + 333 p^{4} T^{12} - 114 p^{5} T^{13} + 31 p^{6} T^{14} - 6 p^{7} T^{15} + p^{8} T^{16} \)
11 \( 1 + 6 T + 47 T^{2} + 210 T^{3} + 981 T^{4} + 3024 T^{5} + 11410 T^{6} + 29100 T^{7} + 109418 T^{8} + 29100 p T^{9} + 11410 p^{2} T^{10} + 3024 p^{3} T^{11} + 981 p^{4} T^{12} + 210 p^{5} T^{13} + 47 p^{6} T^{14} + 6 p^{7} T^{15} + p^{8} T^{16} \)
17 \( 1 - 2 p T^{2} + 481 T^{4} - 194 p T^{6} + 38020 T^{8} - 194 p^{3} T^{10} + 481 p^{4} T^{12} - 2 p^{7} T^{14} + p^{8} T^{16} \)
19 \( 1 - 6 T + 35 T^{2} - 138 T^{3} + 433 T^{4} + 24 p T^{5} - 10978 T^{6} + 3996 p T^{7} - 386174 T^{8} + 3996 p^{2} T^{9} - 10978 p^{2} T^{10} + 24 p^{4} T^{11} + 433 p^{4} T^{12} - 138 p^{5} T^{13} + 35 p^{6} T^{14} - 6 p^{7} T^{15} + p^{8} T^{16} \)
23 \( 1 - 2 T - 81 T^{2} + 90 T^{3} + 4109 T^{4} - 2616 T^{5} - 6170 p T^{6} + 22756 T^{7} + 3763506 T^{8} + 22756 p T^{9} - 6170 p^{3} T^{10} - 2616 p^{3} T^{11} + 4109 p^{4} T^{12} + 90 p^{5} T^{13} - 81 p^{6} T^{14} - 2 p^{7} T^{15} + p^{8} T^{16} \)
29 \( 1 + 8 T - 30 T^{2} - 288 T^{3} + 845 T^{4} + 2664 T^{5} - 52246 T^{6} - 15376 T^{7} + 1818396 T^{8} - 15376 p T^{9} - 52246 p^{2} T^{10} + 2664 p^{3} T^{11} + 845 p^{4} T^{12} - 288 p^{5} T^{13} - 30 p^{6} T^{14} + 8 p^{7} T^{15} + p^{8} T^{16} \)
31 \( 1 - 56 T^{2} - 132 T^{4} + 39416 T^{6} - 700282 T^{8} + 39416 p^{2} T^{10} - 132 p^{4} T^{12} - 56 p^{6} T^{14} + p^{8} T^{16} \)
37 \( 1 - 24 T + 354 T^{2} - 3888 T^{3} + 35917 T^{4} - 291000 T^{5} + 2123946 T^{6} - 14299584 T^{7} + 89708988 T^{8} - 14299584 p T^{9} + 2123946 p^{2} T^{10} - 291000 p^{3} T^{11} + 35917 p^{4} T^{12} - 3888 p^{5} T^{13} + 354 p^{6} T^{14} - 24 p^{7} T^{15} + p^{8} T^{16} \)
41 \( ( 1 + 6 T + 81 T^{2} + 414 T^{3} + 3572 T^{4} + 414 p T^{5} + 81 p^{2} T^{6} + 6 p^{3} T^{7} + p^{4} T^{8} )^{2} \)
43 \( 1 - 6 T - 69 T^{2} + 726 T^{3} + 793 T^{4} - 26376 T^{5} + 25830 T^{6} + 301236 T^{7} + 148962 T^{8} + 301236 p T^{9} + 25830 p^{2} T^{10} - 26376 p^{3} T^{11} + 793 p^{4} T^{12} + 726 p^{5} T^{13} - 69 p^{6} T^{14} - 6 p^{7} T^{15} + p^{8} T^{16} \)
47 \( 1 - 184 T^{2} + 17148 T^{4} - 1150088 T^{6} + 60931334 T^{8} - 1150088 p^{2} T^{10} + 17148 p^{4} T^{12} - 184 p^{6} T^{14} + p^{8} T^{16} \)
53 \( ( 1 - 10 T + 133 T^{2} - 746 T^{3} + 6756 T^{4} - 746 p T^{5} + 133 p^{2} T^{6} - 10 p^{3} T^{7} + p^{4} T^{8} )^{2} \)
59 \( 1 + 18 T + 279 T^{2} + 3078 T^{3} + 31909 T^{4} + 300384 T^{5} + 2553282 T^{6} + 21591828 T^{7} + 163401402 T^{8} + 21591828 p T^{9} + 2553282 p^{2} T^{10} + 300384 p^{3} T^{11} + 31909 p^{4} T^{12} + 3078 p^{5} T^{13} + 279 p^{6} T^{14} + 18 p^{7} T^{15} + p^{8} T^{16} \)
61 \( 1 + 4 T - 134 T^{2} + 392 T^{3} + 12173 T^{4} - 57344 T^{5} - 6310 p T^{6} + 2268068 T^{7} + 7263196 T^{8} + 2268068 p T^{9} - 6310 p^{3} T^{10} - 57344 p^{3} T^{11} + 12173 p^{4} T^{12} + 392 p^{5} T^{13} - 134 p^{6} T^{14} + 4 p^{7} T^{15} + p^{8} T^{16} \)
67 \( 1 - 42 T + 1003 T^{2} - 17430 T^{3} + 245361 T^{4} - 2971224 T^{5} + 31818974 T^{6} - 305253732 T^{7} + 2633665298 T^{8} - 305253732 p T^{9} + 31818974 p^{2} T^{10} - 2971224 p^{3} T^{11} + 245361 p^{4} T^{12} - 17430 p^{5} T^{13} + 1003 p^{6} T^{14} - 42 p^{7} T^{15} + p^{8} T^{16} \)
71 \( 1 - 54 T + 1563 T^{2} - 31914 T^{3} + 509593 T^{4} - 6729840 T^{5} + 76266054 T^{6} - 759952980 T^{7} + 6759291498 T^{8} - 759952980 p T^{9} + 76266054 p^{2} T^{10} - 6729840 p^{3} T^{11} + 509593 p^{4} T^{12} - 31914 p^{5} T^{13} + 1563 p^{6} T^{14} - 54 p^{7} T^{15} + p^{8} T^{16} \)
73 \( 1 - 386 T^{2} + 74305 T^{4} - 9208802 T^{6} + 796087780 T^{8} - 9208802 p^{2} T^{10} + 74305 p^{4} T^{12} - 386 p^{6} T^{14} + p^{8} T^{16} \)
79 \( ( 1 - 8 T + 156 T^{2} - 1000 T^{3} + 15494 T^{4} - 1000 p T^{5} + 156 p^{2} T^{6} - 8 p^{3} T^{7} + p^{4} T^{8} )^{2} \)
83 \( 1 - 416 T^{2} + 78364 T^{4} - 9309536 T^{6} + 846559462 T^{8} - 9309536 p^{2} T^{10} + 78364 p^{4} T^{12} - 416 p^{6} T^{14} + p^{8} T^{16} \)
89 \( 1 - 18 T + 179 T^{2} - 1278 T^{3} + 3129 T^{4} + 25596 T^{5} - 468578 T^{6} + 7961112 T^{7} - 85879678 T^{8} + 7961112 p T^{9} - 468578 p^{2} T^{10} + 25596 p^{3} T^{11} + 3129 p^{4} T^{12} - 1278 p^{5} T^{13} + 179 p^{6} T^{14} - 18 p^{7} T^{15} + p^{8} T^{16} \)
97 \( 1 + 30 T + 595 T^{2} + 8850 T^{3} + 102825 T^{4} + 925452 T^{5} + 6324302 T^{6} + 33963720 T^{7} + 208695218 T^{8} + 33963720 p T^{9} + 6324302 p^{2} T^{10} + 925452 p^{3} T^{11} + 102825 p^{4} T^{12} + 8850 p^{5} T^{13} + 595 p^{6} T^{14} + 30 p^{7} T^{15} + p^{8} T^{16} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{16} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−3.88373192657853701929119726532, −3.87621765068897996468170952308, −3.71742111448679951384238055534, −3.69215210821385787390716775324, −3.68191968289587901233867897517, −3.66518409214208761260527018928, −3.27887828600260924939225756962, −3.19142269827372602574575438762, −3.10125256247150028203922684140, −2.76234791297817438663913753676, −2.54828538626763624814721830188, −2.52411787550612022687924974108, −2.41067965872056017977528390456, −2.35408075602453442066050767093, −2.29814873460689433431943243345, −2.26775174527989200501522215509, −1.85652968182424199270854521903, −1.66727260574101310899267056837, −1.62218364521718091484932005963, −1.30274825585399856070286162313, −1.04136955631968403143114557182, −1.03564627417175221653839681571, −0.857378825353542245798330129982, −0.812615662409074505205398088346, −0.089431085805345631277611551993, 0.089431085805345631277611551993, 0.812615662409074505205398088346, 0.857378825353542245798330129982, 1.03564627417175221653839681571, 1.04136955631968403143114557182, 1.30274825585399856070286162313, 1.62218364521718091484932005963, 1.66727260574101310899267056837, 1.85652968182424199270854521903, 2.26775174527989200501522215509, 2.29814873460689433431943243345, 2.35408075602453442066050767093, 2.41067965872056017977528390456, 2.52411787550612022687924974108, 2.54828538626763624814721830188, 2.76234791297817438663913753676, 3.10125256247150028203922684140, 3.19142269827372602574575438762, 3.27887828600260924939225756962, 3.66518409214208761260527018928, 3.68191968289587901233867897517, 3.69215210821385787390716775324, 3.71742111448679951384238055534, 3.87621765068897996468170952308, 3.88373192657853701929119726532

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.