L(s) = 1 | + (0.644 − 2.40i)2-s + (−1.90 − 1.10i)4-s + (4.49 − 2.18i)5-s + (0.0176 − 0.0658i)7-s + (3.16 − 3.16i)8-s + (−2.34 − 12.2i)10-s + (−4.62 − 8.00i)11-s + (3.38 + 12.6i)13-s + (−0.146 − 0.0848i)14-s + (−9.97 − 17.2i)16-s + (−13.6 − 13.6i)17-s + 5.80i·19-s + (−10.9 − 0.794i)20-s + (−22.2 + 5.96i)22-s + (11.7 + 43.8i)23-s + ⋯ |
L(s) = 1 | + (0.322 − 1.20i)2-s + (−0.477 − 0.275i)4-s + (0.899 − 0.436i)5-s + (0.00251 − 0.00940i)7-s + (0.395 − 0.395i)8-s + (−0.234 − 1.22i)10-s + (−0.420 − 0.727i)11-s + (0.260 + 0.972i)13-s + (−0.0104 − 0.00606i)14-s + (−0.623 − 1.08i)16-s + (−0.800 − 0.800i)17-s + 0.305i·19-s + (−0.549 − 0.0397i)20-s + (−1.01 + 0.270i)22-s + (0.510 + 1.90i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 135 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.278 + 0.960i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 135 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.278 + 0.960i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(1.16562 - 1.55178i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.16562 - 1.55178i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 + (-4.49 + 2.18i)T \) |
good | 2 | \( 1 + (-0.644 + 2.40i)T + (-3.46 - 2i)T^{2} \) |
| 7 | \( 1 + (-0.0176 + 0.0658i)T + (-42.4 - 24.5i)T^{2} \) |
| 11 | \( 1 + (4.62 + 8.00i)T + (-60.5 + 104. i)T^{2} \) |
| 13 | \( 1 + (-3.38 - 12.6i)T + (-146. + 84.5i)T^{2} \) |
| 17 | \( 1 + (13.6 + 13.6i)T + 289iT^{2} \) |
| 19 | \( 1 - 5.80iT - 361T^{2} \) |
| 23 | \( 1 + (-11.7 - 43.8i)T + (-458. + 264.5i)T^{2} \) |
| 29 | \( 1 + (6.37 - 3.67i)T + (420.5 - 728. i)T^{2} \) |
| 31 | \( 1 + (8.35 - 14.4i)T + (-480.5 - 832. i)T^{2} \) |
| 37 | \( 1 + (-36.0 - 36.0i)T + 1.36e3iT^{2} \) |
| 41 | \( 1 + (-31.1 + 53.9i)T + (-840.5 - 1.45e3i)T^{2} \) |
| 43 | \( 1 + (-9.70 - 2.59i)T + (1.60e3 + 924.5i)T^{2} \) |
| 47 | \( 1 + (11.9 - 44.6i)T + (-1.91e3 - 1.10e3i)T^{2} \) |
| 53 | \( 1 + (28.0 - 28.0i)T - 2.80e3iT^{2} \) |
| 59 | \( 1 + (16.3 + 9.44i)T + (1.74e3 + 3.01e3i)T^{2} \) |
| 61 | \( 1 + (-2.69 - 4.66i)T + (-1.86e3 + 3.22e3i)T^{2} \) |
| 67 | \( 1 + (47.9 - 12.8i)T + (3.88e3 - 2.24e3i)T^{2} \) |
| 71 | \( 1 + 56.4T + 5.04e3T^{2} \) |
| 73 | \( 1 + (54.7 - 54.7i)T - 5.32e3iT^{2} \) |
| 79 | \( 1 + (40.9 - 23.6i)T + (3.12e3 - 5.40e3i)T^{2} \) |
| 83 | \( 1 + (60.0 + 16.0i)T + (5.96e3 + 3.44e3i)T^{2} \) |
| 89 | \( 1 - 59.1iT - 7.92e3T^{2} \) |
| 97 | \( 1 + (-40.2 + 150. i)T + (-8.14e3 - 4.70e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.71258174029503489122869305104, −11.56806883425323937816114676908, −10.90529747896259219604466602004, −9.697770702661819362138668475953, −8.955641002483911845792676975659, −7.23265887959302128918330734649, −5.75324148215518997798622254833, −4.42306808214168123903640205098, −2.88211039400084390810079839480, −1.46253345165526566099654047940,
2.36867494023156121256475332492, 4.59311083803556636757658618724, 5.79747800442183257194916944782, 6.60422350807922805447805454510, 7.68836665660795959855123612804, 8.855758451256544083191558738786, 10.28638598521414778578713816219, 10.98074359725074205263364154725, 12.86391669276551455175652917756, 13.33087096629515630194895220238