Properties

Label 135.3.l.a.37.9
Level $135$
Weight $3$
Character 135.37
Analytic conductor $3.678$
Analytic rank $0$
Dimension $40$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [135,3,Mod(37,135)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(135, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([4, 3])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("135.37"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 135 = 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 135.l (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.67848356886\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(10\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 45)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 37.9
Character \(\chi\) \(=\) 135.37
Dual form 135.3.l.a.73.9

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.644680 - 2.40598i) q^{2} +(-1.90902 - 1.10217i) q^{4} +(4.49898 - 2.18155i) q^{5} +(0.0176356 - 0.0658171i) q^{7} +(3.16269 - 3.16269i) q^{8} +(-2.34837 - 12.2309i) q^{10} +(-4.62292 - 8.00713i) q^{11} +(3.38696 + 12.6403i) q^{13} +(-0.146985 - 0.0848619i) q^{14} +(-9.97912 - 17.2843i) q^{16} +(-13.6029 - 13.6029i) q^{17} +5.80704i q^{19} +(-10.9931 - 0.794023i) q^{20} +(-22.2453 + 5.96060i) q^{22} +(11.7365 + 43.8013i) q^{23} +(15.4816 - 19.6295i) q^{25} +32.5958 q^{26} +(-0.106208 + 0.106208i) q^{28} +(-6.37222 + 3.67900i) q^{29} +(-8.35363 + 14.4689i) q^{31} +(-30.7378 + 8.23618i) q^{32} +(-41.4978 + 23.9587i) q^{34} +(-0.0642412 - 0.334583i) q^{35} +(36.0680 + 36.0680i) q^{37} +(13.9716 + 3.74368i) q^{38} +(7.32929 - 21.1284i) q^{40} +(31.1567 - 53.9649i) q^{41} +(9.70259 + 2.59980i) q^{43} +20.3810i q^{44} +112.951 q^{46} +(-11.9633 + 44.6476i) q^{47} +(42.4312 + 24.4977i) q^{49} +(-37.2475 - 49.9033i) q^{50} +(7.46602 - 27.8636i) q^{52} +(-28.0258 + 28.0258i) q^{53} +(-38.2664 - 25.9388i) q^{55} +(-0.152383 - 0.263935i) q^{56} +(4.74356 + 17.7032i) q^{58} +(-16.3509 - 9.44022i) q^{59} +(2.69547 + 4.66870i) q^{61} +(29.4265 + 29.4265i) q^{62} -0.568692i q^{64} +(42.8134 + 49.4796i) q^{65} +(-47.9117 + 12.8379i) q^{67} +(10.9754 + 40.9609i) q^{68} +(-0.846414 - 0.0611359i) q^{70} -56.4200 q^{71} +(-54.7135 + 54.7135i) q^{73} +(110.031 - 63.5264i) q^{74} +(6.40036 - 11.0857i) q^{76} +(-0.608534 + 0.163056i) q^{77} +(-40.9692 + 23.6536i) q^{79} +(-82.6026 - 55.9919i) q^{80} +(-109.752 - 109.752i) q^{82} +(-60.0267 - 16.0841i) q^{83} +(-90.8746 - 31.5237i) q^{85} +(12.5101 - 21.6682i) q^{86} +(-39.9449 - 10.7032i) q^{88} +59.1599i q^{89} +0.891679 q^{91} +(25.8713 - 96.5530i) q^{92} +(99.7085 + 57.5668i) q^{94} +(12.6684 + 26.1258i) q^{95} +(40.2595 - 150.251i) q^{97} +(86.2954 - 86.2954i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q + 2 q^{2} + 2 q^{5} - 2 q^{7} + 24 q^{8} - 8 q^{10} - 8 q^{11} - 2 q^{13} + 28 q^{16} - 28 q^{17} + 114 q^{20} + 14 q^{22} - 82 q^{23} - 8 q^{25} + 112 q^{26} - 88 q^{28} - 4 q^{31} + 14 q^{32} - 352 q^{35}+ \cdots + 1876 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/135\mathbb{Z}\right)^\times\).

\(n\) \(56\) \(82\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.644680 2.40598i 0.322340 1.20299i −0.594619 0.804008i \(-0.702697\pi\)
0.916959 0.398981i \(-0.130636\pi\)
\(3\) 0 0
\(4\) −1.90902 1.10217i −0.477254 0.275543i
\(5\) 4.49898 2.18155i 0.899796 0.436311i
\(6\) 0 0
\(7\) 0.0176356 0.0658171i 0.00251938 0.00940244i −0.964655 0.263517i \(-0.915117\pi\)
0.967174 + 0.254115i \(0.0817841\pi\)
\(8\) 3.16269 3.16269i 0.395336 0.395336i
\(9\) 0 0
\(10\) −2.34837 12.2309i −0.234837 1.22309i
\(11\) −4.62292 8.00713i −0.420265 0.727921i 0.575700 0.817661i \(-0.304730\pi\)
−0.995965 + 0.0897404i \(0.971396\pi\)
\(12\) 0 0
\(13\) 3.38696 + 12.6403i 0.260535 + 0.972331i 0.964927 + 0.262519i \(0.0845534\pi\)
−0.704391 + 0.709812i \(0.748780\pi\)
\(14\) −0.146985 0.0848619i −0.0104989 0.00606156i
\(15\) 0 0
\(16\) −9.97912 17.2843i −0.623695 1.08027i
\(17\) −13.6029 13.6029i −0.800170 0.800170i 0.182952 0.983122i \(-0.441435\pi\)
−0.983122 + 0.182952i \(0.941435\pi\)
\(18\) 0 0
\(19\) 5.80704i 0.305634i 0.988255 + 0.152817i \(0.0488345\pi\)
−0.988255 + 0.152817i \(0.951166\pi\)
\(20\) −10.9931 0.794023i −0.549654 0.0397011i
\(21\) 0 0
\(22\) −22.2453 + 5.96060i −1.01115 + 0.270936i
\(23\) 11.7365 + 43.8013i 0.510283 + 1.90440i 0.417390 + 0.908728i \(0.362945\pi\)
0.0928936 + 0.995676i \(0.470388\pi\)
\(24\) 0 0
\(25\) 15.4816 19.6295i 0.619266 0.785182i
\(26\) 32.5958 1.25368
\(27\) 0 0
\(28\) −0.106208 + 0.106208i −0.00379316 + 0.00379316i
\(29\) −6.37222 + 3.67900i −0.219732 + 0.126862i −0.605826 0.795597i \(-0.707157\pi\)
0.386094 + 0.922459i \(0.373824\pi\)
\(30\) 0 0
\(31\) −8.35363 + 14.4689i −0.269472 + 0.466739i −0.968726 0.248135i \(-0.920183\pi\)
0.699254 + 0.714874i \(0.253516\pi\)
\(32\) −30.7378 + 8.23618i −0.960558 + 0.257381i
\(33\) 0 0
\(34\) −41.4978 + 23.9587i −1.22052 + 0.704669i
\(35\) −0.0642412 0.334583i −0.00183546 0.00955951i
\(36\) 0 0
\(37\) 36.0680 + 36.0680i 0.974810 + 0.974810i 0.999690 0.0248806i \(-0.00792055\pi\)
−0.0248806 + 0.999690i \(0.507921\pi\)
\(38\) 13.9716 + 3.74368i 0.367674 + 0.0985180i
\(39\) 0 0
\(40\) 7.32929 21.1284i 0.183232 0.528211i
\(41\) 31.1567 53.9649i 0.759919 1.31622i −0.182973 0.983118i \(-0.558572\pi\)
0.942892 0.333100i \(-0.108095\pi\)
\(42\) 0 0
\(43\) 9.70259 + 2.59980i 0.225642 + 0.0604605i 0.369868 0.929084i \(-0.379403\pi\)
−0.144227 + 0.989545i \(0.546069\pi\)
\(44\) 20.3810i 0.463204i
\(45\) 0 0
\(46\) 112.951 2.45546
\(47\) −11.9633 + 44.6476i −0.254538 + 0.949948i 0.713809 + 0.700340i \(0.246968\pi\)
−0.968347 + 0.249608i \(0.919698\pi\)
\(48\) 0 0
\(49\) 42.4312 + 24.4977i 0.865943 + 0.499953i
\(50\) −37.2475 49.9033i −0.744951 0.998065i
\(51\) 0 0
\(52\) 7.46602 27.8636i 0.143577 0.535838i
\(53\) −28.0258 + 28.0258i −0.528789 + 0.528789i −0.920211 0.391423i \(-0.871983\pi\)
0.391423 + 0.920211i \(0.371983\pi\)
\(54\) 0 0
\(55\) −38.2664 25.9388i −0.695753 0.471614i
\(56\) −0.152383 0.263935i −0.00272112 0.00471312i
\(57\) 0 0
\(58\) 4.74356 + 17.7032i 0.0817855 + 0.305228i
\(59\) −16.3509 9.44022i −0.277135 0.160004i 0.354991 0.934870i \(-0.384484\pi\)
−0.632126 + 0.774866i \(0.717817\pi\)
\(60\) 0 0
\(61\) 2.69547 + 4.66870i 0.0441881 + 0.0765360i 0.887274 0.461244i \(-0.152597\pi\)
−0.843085 + 0.537780i \(0.819263\pi\)
\(62\) 29.4265 + 29.4265i 0.474621 + 0.474621i
\(63\) 0 0
\(64\) 0.568692i 0.00888582i
\(65\) 42.8134 + 49.4796i 0.658667 + 0.761225i
\(66\) 0 0
\(67\) −47.9117 + 12.8379i −0.715100 + 0.191610i −0.597984 0.801508i \(-0.704031\pi\)
−0.117116 + 0.993118i \(0.537365\pi\)
\(68\) 10.9754 + 40.9609i 0.161403 + 0.602366i
\(69\) 0 0
\(70\) −0.846414 0.0611359i −0.0120916 0.000873370i
\(71\) −56.4200 −0.794648 −0.397324 0.917678i \(-0.630061\pi\)
−0.397324 + 0.917678i \(0.630061\pi\)
\(72\) 0 0
\(73\) −54.7135 + 54.7135i −0.749500 + 0.749500i −0.974385 0.224885i \(-0.927799\pi\)
0.224885 + 0.974385i \(0.427799\pi\)
\(74\) 110.031 63.5264i 1.48691 0.858465i
\(75\) 0 0
\(76\) 6.40036 11.0857i 0.0842152 0.145865i
\(77\) −0.608534 + 0.163056i −0.00790303 + 0.00211761i
\(78\) 0 0
\(79\) −40.9692 + 23.6536i −0.518597 + 0.299412i −0.736361 0.676589i \(-0.763457\pi\)
0.217763 + 0.976002i \(0.430124\pi\)
\(80\) −82.6026 55.9919i −1.03253 0.699899i
\(81\) 0 0
\(82\) −109.752 109.752i −1.33844 1.33844i
\(83\) −60.0267 16.0841i −0.723213 0.193784i −0.121608 0.992578i \(-0.538805\pi\)
−0.601605 + 0.798794i \(0.705472\pi\)
\(84\) 0 0
\(85\) −90.8746 31.5237i −1.06911 0.370867i
\(86\) 12.5101 21.6682i 0.145467 0.251956i
\(87\) 0 0
\(88\) −39.9449 10.7032i −0.453919 0.121627i
\(89\) 59.1599i 0.664718i 0.943153 + 0.332359i \(0.107844\pi\)
−0.943153 + 0.332359i \(0.892156\pi\)
\(90\) 0 0
\(91\) 0.891679 0.00979867
\(92\) 25.8713 96.5530i 0.281210 1.04949i
\(93\) 0 0
\(94\) 99.7085 + 57.5668i 1.06073 + 0.612412i
\(95\) 12.6684 + 26.1258i 0.133351 + 0.275008i
\(96\) 0 0
\(97\) 40.2595 150.251i 0.415047 1.54898i −0.369695 0.929153i \(-0.620538\pi\)
0.784742 0.619823i \(-0.212796\pi\)
\(98\) 86.2954 86.2954i 0.880566 0.880566i
\(99\) 0 0
\(100\) −51.1898 + 20.4097i −0.511898 + 0.204097i
\(101\) −27.6053 47.8137i −0.273319 0.473403i 0.696390 0.717663i \(-0.254788\pi\)
−0.969710 + 0.244260i \(0.921455\pi\)
\(102\) 0 0
\(103\) −23.6658 88.3218i −0.229765 0.857493i −0.980439 0.196821i \(-0.936938\pi\)
0.750675 0.660672i \(-0.229729\pi\)
\(104\) 50.6892 + 29.2654i 0.487397 + 0.281399i
\(105\) 0 0
\(106\) 49.3618 + 85.4971i 0.465677 + 0.806576i
\(107\) 14.6336 + 14.6336i 0.136762 + 0.136762i 0.772174 0.635411i \(-0.219169\pi\)
−0.635411 + 0.772174i \(0.719169\pi\)
\(108\) 0 0
\(109\) 112.055i 1.02803i −0.857781 0.514015i \(-0.828157\pi\)
0.857781 0.514015i \(-0.171843\pi\)
\(110\) −87.0777 + 75.3459i −0.791615 + 0.684963i
\(111\) 0 0
\(112\) −1.31359 + 0.351976i −0.0117285 + 0.00314264i
\(113\) −9.59771 35.8191i −0.0849355 0.316984i 0.910366 0.413803i \(-0.135800\pi\)
−0.995302 + 0.0968194i \(0.969133\pi\)
\(114\) 0 0
\(115\) 148.357 + 171.457i 1.29006 + 1.49093i
\(116\) 16.2196 0.139824
\(117\) 0 0
\(118\) −33.2541 + 33.2541i −0.281814 + 0.281814i
\(119\) −1.13520 + 0.655407i −0.00953948 + 0.00550762i
\(120\) 0 0
\(121\) 17.7573 30.7565i 0.146754 0.254186i
\(122\) 12.9705 3.47543i 0.106316 0.0284872i
\(123\) 0 0
\(124\) 31.8944 18.4143i 0.257213 0.148502i
\(125\) 26.8287 122.087i 0.214629 0.976696i
\(126\) 0 0
\(127\) 151.793 + 151.793i 1.19522 + 1.19522i 0.975580 + 0.219643i \(0.0704892\pi\)
0.219643 + 0.975580i \(0.429511\pi\)
\(128\) −124.320 33.3113i −0.971247 0.260245i
\(129\) 0 0
\(130\) 146.648 71.1095i 1.12806 0.546996i
\(131\) 0.751448 1.30155i 0.00573624 0.00993547i −0.863143 0.504960i \(-0.831507\pi\)
0.868879 + 0.495024i \(0.164841\pi\)
\(132\) 0 0
\(133\) 0.382203 + 0.102411i 0.00287370 + 0.000770006i
\(134\) 123.551i 0.922021i
\(135\) 0 0
\(136\) −86.0434 −0.632672
\(137\) 18.0785 67.4699i 0.131960 0.492481i −0.868032 0.496508i \(-0.834615\pi\)
0.999992 + 0.00402717i \(0.00128189\pi\)
\(138\) 0 0
\(139\) −106.332 61.3909i −0.764980 0.441661i 0.0661012 0.997813i \(-0.478944\pi\)
−0.831081 + 0.556152i \(0.812277\pi\)
\(140\) −0.246130 + 0.709529i −0.00175807 + 0.00506806i
\(141\) 0 0
\(142\) −36.3728 + 135.745i −0.256147 + 0.955953i
\(143\) 85.5549 85.5549i 0.598286 0.598286i
\(144\) 0 0
\(145\) −20.6426 + 30.4531i −0.142362 + 0.210021i
\(146\) 96.3668 + 166.912i 0.660047 + 1.14323i
\(147\) 0 0
\(148\) −29.1013 108.607i −0.196630 0.733834i
\(149\) 23.0090 + 13.2842i 0.154423 + 0.0891560i 0.575220 0.817999i \(-0.304916\pi\)
−0.420797 + 0.907155i \(0.638250\pi\)
\(150\) 0 0
\(151\) −49.2414 85.2887i −0.326102 0.564826i 0.655633 0.755080i \(-0.272402\pi\)
−0.981735 + 0.190254i \(0.939069\pi\)
\(152\) 18.3659 + 18.3659i 0.120828 + 0.120828i
\(153\) 0 0
\(154\) 1.56924i 0.0101899i
\(155\) −6.01810 + 83.3193i −0.0388264 + 0.537544i
\(156\) 0 0
\(157\) 166.811 44.6968i 1.06249 0.284693i 0.315086 0.949063i \(-0.397967\pi\)
0.747404 + 0.664370i \(0.231300\pi\)
\(158\) 30.4980 + 113.820i 0.193025 + 0.720379i
\(159\) 0 0
\(160\) −120.321 + 104.111i −0.752008 + 0.650692i
\(161\) 3.08985 0.0191916
\(162\) 0 0
\(163\) −65.0824 + 65.0824i −0.399278 + 0.399278i −0.877978 0.478700i \(-0.841108\pi\)
0.478700 + 0.877978i \(0.341108\pi\)
\(164\) −118.957 + 68.6800i −0.725349 + 0.418780i
\(165\) 0 0
\(166\) −77.3960 + 134.054i −0.466241 + 0.807553i
\(167\) −192.960 + 51.7034i −1.15545 + 0.309601i −0.785146 0.619311i \(-0.787412\pi\)
−0.370301 + 0.928912i \(0.620745\pi\)
\(168\) 0 0
\(169\) −1.94752 + 1.12440i −0.0115238 + 0.00665325i
\(170\) −134.430 + 198.320i −0.790767 + 1.16659i
\(171\) 0 0
\(172\) −15.6570 15.6570i −0.0910290 0.0910290i
\(173\) 33.4003 + 8.94958i 0.193065 + 0.0517317i 0.354056 0.935224i \(-0.384802\pi\)
−0.160991 + 0.986956i \(0.551469\pi\)
\(174\) 0 0
\(175\) −1.01893 1.36514i −0.00582246 0.00780077i
\(176\) −92.2653 + 159.808i −0.524235 + 0.908001i
\(177\) 0 0
\(178\) 142.337 + 38.1392i 0.799648 + 0.214265i
\(179\) 185.962i 1.03890i −0.854502 0.519448i \(-0.826138\pi\)
0.854502 0.519448i \(-0.173862\pi\)
\(180\) 0 0
\(181\) −97.7851 −0.540249 −0.270125 0.962825i \(-0.587065\pi\)
−0.270125 + 0.962825i \(0.587065\pi\)
\(182\) 0.574847 2.14536i 0.00315850 0.0117877i
\(183\) 0 0
\(184\) 175.649 + 101.411i 0.954613 + 0.551146i
\(185\) 240.953 + 83.5848i 1.30245 + 0.451810i
\(186\) 0 0
\(187\) −46.0350 + 171.805i −0.246177 + 0.918744i
\(188\) 72.0473 72.0473i 0.383231 0.383231i
\(189\) 0 0
\(190\) 71.0251 13.6371i 0.373816 0.0717741i
\(191\) 68.2090 + 118.141i 0.357115 + 0.618542i 0.987478 0.157759i \(-0.0504270\pi\)
−0.630362 + 0.776301i \(0.717094\pi\)
\(192\) 0 0
\(193\) 23.9050 + 89.2148i 0.123860 + 0.462253i 0.999796 0.0201740i \(-0.00642202\pi\)
−0.875936 + 0.482427i \(0.839755\pi\)
\(194\) −335.545 193.727i −1.72961 0.998594i
\(195\) 0 0
\(196\) −54.0013 93.5329i −0.275517 0.477209i
\(197\) 170.623 + 170.623i 0.866107 + 0.866107i 0.992039 0.125932i \(-0.0401920\pi\)
−0.125932 + 0.992039i \(0.540192\pi\)
\(198\) 0 0
\(199\) 36.4196i 0.183013i −0.995804 0.0915066i \(-0.970832\pi\)
0.995804 0.0915066i \(-0.0291683\pi\)
\(200\) −13.1185 111.046i −0.0655925 0.555229i
\(201\) 0 0
\(202\) −132.835 + 35.5931i −0.657601 + 0.176204i
\(203\) 0.129763 + 0.484283i 0.000639227 + 0.00238563i
\(204\) 0 0
\(205\) 22.4458 310.757i 0.109492 1.51589i
\(206\) −227.757 −1.10562
\(207\) 0 0
\(208\) 184.681 184.681i 0.887887 0.887887i
\(209\) 46.4977 26.8455i 0.222477 0.128447i
\(210\) 0 0
\(211\) 96.8033 167.668i 0.458784 0.794636i −0.540113 0.841592i \(-0.681619\pi\)
0.998897 + 0.0469559i \(0.0149520\pi\)
\(212\) 84.3909 22.6125i 0.398070 0.106663i
\(213\) 0 0
\(214\) 44.6420 25.7741i 0.208607 0.120440i
\(215\) 49.3234 9.47028i 0.229411 0.0440478i
\(216\) 0 0
\(217\) 0.804980 + 0.804980i 0.00370959 + 0.00370959i
\(218\) −269.603 72.2398i −1.23671 0.331375i
\(219\) 0 0
\(220\) 44.4622 + 91.6936i 0.202101 + 0.416789i
\(221\) 125.872 218.017i 0.569558 0.986503i
\(222\) 0 0
\(223\) 92.4808 + 24.7802i 0.414712 + 0.111122i 0.460141 0.887846i \(-0.347799\pi\)
−0.0454290 + 0.998968i \(0.514465\pi\)
\(224\) 2.16833i 0.00968002i
\(225\) 0 0
\(226\) −92.3675 −0.408706
\(227\) 85.2664 318.219i 0.375623 1.40184i −0.476810 0.879007i \(-0.658207\pi\)
0.852433 0.522837i \(-0.175126\pi\)
\(228\) 0 0
\(229\) −360.256 207.994i −1.57317 0.908269i −0.995777 0.0918017i \(-0.970737\pi\)
−0.577391 0.816468i \(-0.695929\pi\)
\(230\) 508.165 246.409i 2.20941 1.07134i
\(231\) 0 0
\(232\) −8.51781 + 31.7889i −0.0367147 + 0.137021i
\(233\) 22.0213 22.0213i 0.0945121 0.0945121i −0.658270 0.752782i \(-0.728711\pi\)
0.752782 + 0.658270i \(0.228711\pi\)
\(234\) 0 0
\(235\) 43.5785 + 226.967i 0.185441 + 0.965817i
\(236\) 20.8095 + 36.0431i 0.0881758 + 0.152725i
\(237\) 0 0
\(238\) 0.845055 + 3.15379i 0.00355065 + 0.0132512i
\(239\) −267.552 154.471i −1.11946 0.646323i −0.178200 0.983994i \(-0.557027\pi\)
−0.941264 + 0.337672i \(0.890361\pi\)
\(240\) 0 0
\(241\) −12.8569 22.2688i −0.0533481 0.0924016i 0.838118 0.545489i \(-0.183656\pi\)
−0.891466 + 0.453087i \(0.850323\pi\)
\(242\) −62.5517 62.5517i −0.258478 0.258478i
\(243\) 0 0
\(244\) 11.8835i 0.0487028i
\(245\) 244.340 + 17.6485i 0.997307 + 0.0720349i
\(246\) 0 0
\(247\) −73.4028 + 19.6682i −0.297177 + 0.0796284i
\(248\) 19.3407 + 72.1806i 0.0779868 + 0.291051i
\(249\) 0 0
\(250\) −276.443 143.256i −1.10577 0.573025i
\(251\) −275.877 −1.09911 −0.549556 0.835457i \(-0.685203\pi\)
−0.549556 + 0.835457i \(0.685203\pi\)
\(252\) 0 0
\(253\) 296.465 296.465i 1.17180 1.17180i
\(254\) 463.070 267.353i 1.82311 1.05257i
\(255\) 0 0
\(256\) −159.155 + 275.665i −0.621701 + 1.07682i
\(257\) 6.18001 1.65593i 0.0240467 0.00644330i −0.246776 0.969073i \(-0.579371\pi\)
0.270822 + 0.962629i \(0.412704\pi\)
\(258\) 0 0
\(259\) 3.00997 1.73781i 0.0116215 0.00670968i
\(260\) −27.1964 141.645i −0.104602 0.544789i
\(261\) 0 0
\(262\) −2.64705 2.64705i −0.0101032 0.0101032i
\(263\) 205.249 + 54.9964i 0.780416 + 0.209112i 0.626968 0.779045i \(-0.284296\pi\)
0.153448 + 0.988157i \(0.450962\pi\)
\(264\) 0 0
\(265\) −64.9477 + 187.227i −0.245086 + 0.706518i
\(266\) 0.492797 0.853549i 0.00185262 0.00320883i
\(267\) 0 0
\(268\) 105.614 + 28.2991i 0.394081 + 0.105594i
\(269\) 349.046i 1.29757i 0.760973 + 0.648784i \(0.224722\pi\)
−0.760973 + 0.648784i \(0.775278\pi\)
\(270\) 0 0
\(271\) −202.277 −0.746409 −0.373205 0.927749i \(-0.621741\pi\)
−0.373205 + 0.927749i \(0.621741\pi\)
\(272\) −99.3722 + 370.862i −0.365339 + 1.36346i
\(273\) 0 0
\(274\) −150.676 86.9930i −0.549913 0.317493i
\(275\) −228.747 33.2177i −0.831806 0.120792i
\(276\) 0 0
\(277\) 62.8000 234.373i 0.226715 0.846112i −0.754995 0.655730i \(-0.772361\pi\)
0.981710 0.190381i \(-0.0609725\pi\)
\(278\) −216.255 + 216.255i −0.777897 + 0.777897i
\(279\) 0 0
\(280\) −1.26136 0.855006i −0.00450484 0.00305359i
\(281\) −140.160 242.764i −0.498789 0.863929i 0.501210 0.865326i \(-0.332889\pi\)
−0.999999 + 0.00139729i \(0.999555\pi\)
\(282\) 0 0
\(283\) 99.8610 + 372.686i 0.352866 + 1.31691i 0.883149 + 0.469092i \(0.155419\pi\)
−0.530283 + 0.847820i \(0.677914\pi\)
\(284\) 107.707 + 62.1845i 0.379249 + 0.218959i
\(285\) 0 0
\(286\) −150.688 260.999i −0.526880 0.912583i
\(287\) −3.00235 3.00235i −0.0104611 0.0104611i
\(288\) 0 0
\(289\) 81.0774i 0.280545i
\(290\) 59.9617 + 69.2980i 0.206764 + 0.238959i
\(291\) 0 0
\(292\) 164.753 44.1453i 0.564222 0.151183i
\(293\) 10.9337 + 40.8052i 0.0373164 + 0.139267i 0.982071 0.188512i \(-0.0603665\pi\)
−0.944754 + 0.327779i \(0.893700\pi\)
\(294\) 0 0
\(295\) −94.1569 6.80090i −0.319176 0.0230539i
\(296\) 228.143 0.770755
\(297\) 0 0
\(298\) 46.7950 46.7950i 0.157030 0.157030i
\(299\) −513.910 + 296.706i −1.71876 + 0.992329i
\(300\) 0 0
\(301\) 0.342223 0.592747i 0.00113695 0.00196926i
\(302\) −236.948 + 63.4899i −0.784595 + 0.210232i
\(303\) 0 0
\(304\) 100.371 57.9492i 0.330168 0.190622i
\(305\) 22.3119 + 15.1240i 0.0731537 + 0.0495870i
\(306\) 0 0
\(307\) −85.1111 85.1111i −0.277235 0.277235i 0.554769 0.832004i \(-0.312806\pi\)
−0.832004 + 0.554769i \(0.812806\pi\)
\(308\) 1.34142 + 0.359431i 0.00435525 + 0.00116699i
\(309\) 0 0
\(310\) 196.585 + 68.1937i 0.634144 + 0.219980i
\(311\) −227.093 + 393.336i −0.730202 + 1.26475i 0.226595 + 0.973989i \(0.427241\pi\)
−0.956797 + 0.290758i \(0.906093\pi\)
\(312\) 0 0
\(313\) −287.001 76.9018i −0.916937 0.245693i −0.230661 0.973034i \(-0.574089\pi\)
−0.686276 + 0.727342i \(0.740756\pi\)
\(314\) 430.158i 1.36993i
\(315\) 0 0
\(316\) 104.281 0.330004
\(317\) 22.8819 85.3965i 0.0721827 0.269389i −0.920397 0.390985i \(-0.872134\pi\)
0.992580 + 0.121596i \(0.0388011\pi\)
\(318\) 0 0
\(319\) 58.9165 + 34.0155i 0.184691 + 0.106632i
\(320\) −1.24063 2.55854i −0.00387698 0.00799542i
\(321\) 0 0
\(322\) 1.99197 7.43412i 0.00618623 0.0230873i
\(323\) 78.9926 78.9926i 0.244559 0.244559i
\(324\) 0 0
\(325\) 300.559 + 129.208i 0.924797 + 0.397564i
\(326\) 114.629 + 198.544i 0.351624 + 0.609031i
\(327\) 0 0
\(328\) −72.1354 269.213i −0.219925 0.820771i
\(329\) 2.72759 + 1.57478i 0.00829055 + 0.00478655i
\(330\) 0 0
\(331\) 223.152 + 386.510i 0.674175 + 1.16770i 0.976709 + 0.214566i \(0.0688338\pi\)
−0.302535 + 0.953138i \(0.597833\pi\)
\(332\) 96.8645 + 96.8645i 0.291761 + 0.291761i
\(333\) 0 0
\(334\) 497.589i 1.48979i
\(335\) −187.547 + 162.279i −0.559842 + 0.484416i
\(336\) 0 0
\(337\) −28.2958 + 7.58184i −0.0839638 + 0.0224980i −0.300556 0.953764i \(-0.597172\pi\)
0.216593 + 0.976262i \(0.430506\pi\)
\(338\) 1.44975 + 5.41056i 0.00428921 + 0.0160076i
\(339\) 0 0
\(340\) 138.737 + 160.339i 0.408049 + 0.471584i
\(341\) 154.473 0.452999
\(342\) 0 0
\(343\) 4.72156 4.72156i 0.0137655 0.0137655i
\(344\) 38.9086 22.4639i 0.113107 0.0653021i
\(345\) 0 0
\(346\) 43.0650 74.5907i 0.124465 0.215580i
\(347\) 326.160 87.3943i 0.939942 0.251857i 0.243853 0.969812i \(-0.421589\pi\)
0.696089 + 0.717956i \(0.254922\pi\)
\(348\) 0 0
\(349\) −51.4915 + 29.7286i −0.147540 + 0.0851823i −0.571953 0.820287i \(-0.693814\pi\)
0.424413 + 0.905469i \(0.360481\pi\)
\(350\) −3.94137 + 1.57145i −0.0112611 + 0.00448985i
\(351\) 0 0
\(352\) 208.047 + 208.047i 0.591042 + 0.591042i
\(353\) −514.426 137.840i −1.45730 0.390482i −0.558742 0.829342i \(-0.688716\pi\)
−0.898555 + 0.438860i \(0.855382\pi\)
\(354\) 0 0
\(355\) −253.832 + 123.083i −0.715021 + 0.346713i
\(356\) 65.2043 112.937i 0.183158 0.317239i
\(357\) 0 0
\(358\) −447.421 119.886i −1.24978 0.334878i
\(359\) 342.196i 0.953192i 0.879122 + 0.476596i \(0.158130\pi\)
−0.879122 + 0.476596i \(0.841870\pi\)
\(360\) 0 0
\(361\) 327.278 0.906588
\(362\) −63.0401 + 235.269i −0.174144 + 0.649914i
\(363\) 0 0
\(364\) −1.70223 0.982783i −0.00467646 0.00269995i
\(365\) −126.795 + 365.516i −0.347382 + 1.00141i
\(366\) 0 0
\(367\) −95.2584 + 355.509i −0.259560 + 0.968690i 0.705937 + 0.708275i \(0.250526\pi\)
−0.965497 + 0.260416i \(0.916140\pi\)
\(368\) 639.956 639.956i 1.73901 1.73901i
\(369\) 0 0
\(370\) 356.441 525.843i 0.963354 1.42120i
\(371\) 1.35032 + 2.33883i 0.00363968 + 0.00630412i
\(372\) 0 0
\(373\) 86.1459 + 321.501i 0.230954 + 0.861933i 0.979931 + 0.199337i \(0.0638787\pi\)
−0.748977 + 0.662596i \(0.769455\pi\)
\(374\) 383.681 + 221.519i 1.02589 + 0.592296i
\(375\) 0 0
\(376\) 103.370 + 179.042i 0.274921 + 0.476177i
\(377\) −68.0862 68.0862i −0.180600 0.180600i
\(378\) 0 0
\(379\) 203.700i 0.537466i −0.963215 0.268733i \(-0.913395\pi\)
0.963215 0.268733i \(-0.0866049\pi\)
\(380\) 4.61092 63.8373i 0.0121340 0.167993i
\(381\) 0 0
\(382\) 328.219 87.9460i 0.859212 0.230225i
\(383\) 5.35538 + 19.9865i 0.0139827 + 0.0521842i 0.972565 0.232633i \(-0.0747339\pi\)
−0.958582 + 0.284817i \(0.908067\pi\)
\(384\) 0 0
\(385\) −2.38206 + 2.06114i −0.00618718 + 0.00535360i
\(386\) 230.060 0.596010
\(387\) 0 0
\(388\) −242.458 + 242.458i −0.624892 + 0.624892i
\(389\) 160.439 92.6297i 0.412440 0.238123i −0.279397 0.960176i \(-0.590135\pi\)
0.691838 + 0.722053i \(0.256801\pi\)
\(390\) 0 0
\(391\) 436.174 755.475i 1.11553 1.93216i
\(392\) 211.675 56.7182i 0.539988 0.144689i
\(393\) 0 0
\(394\) 520.513 300.518i 1.32110 0.762737i
\(395\) −132.718 + 195.793i −0.335995 + 0.495680i
\(396\) 0 0
\(397\) −236.474 236.474i −0.595652 0.595652i 0.343501 0.939152i \(-0.388387\pi\)
−0.939152 + 0.343501i \(0.888387\pi\)
\(398\) −87.6248 23.4790i −0.220163 0.0589925i
\(399\) 0 0
\(400\) −493.777 71.7045i −1.23444 0.179261i
\(401\) 34.0375 58.9547i 0.0848816 0.147019i −0.820459 0.571705i \(-0.806282\pi\)
0.905341 + 0.424686i \(0.139615\pi\)
\(402\) 0 0
\(403\) −211.185 56.5868i −0.524032 0.140414i
\(404\) 121.703i 0.301245i
\(405\) 0 0
\(406\) 1.24883 0.00307593
\(407\) 122.062 455.540i 0.299906 1.11926i
\(408\) 0 0
\(409\) 326.511 + 188.511i 0.798315 + 0.460907i 0.842882 0.538099i \(-0.180857\pi\)
−0.0445668 + 0.999006i \(0.514191\pi\)
\(410\) −733.204 254.343i −1.78830 0.620348i
\(411\) 0 0
\(412\) −52.1674 + 194.691i −0.126620 + 0.472552i
\(413\) −0.909687 + 0.909687i −0.00220263 + 0.00220263i
\(414\) 0 0
\(415\) −305.147 + 58.5894i −0.735295 + 0.141179i
\(416\) −208.216 360.640i −0.500518 0.866923i
\(417\) 0 0
\(418\) −34.6135 129.179i −0.0828074 0.309041i
\(419\) 198.025 + 114.330i 0.472613 + 0.272863i 0.717333 0.696731i \(-0.245363\pi\)
−0.244720 + 0.969594i \(0.578696\pi\)
\(420\) 0 0
\(421\) 204.894 + 354.887i 0.486684 + 0.842961i 0.999883 0.0153086i \(-0.00487306\pi\)
−0.513199 + 0.858270i \(0.671540\pi\)
\(422\) −340.999 340.999i −0.808055 0.808055i
\(423\) 0 0
\(424\) 177.274i 0.418098i
\(425\) −477.614 + 56.4234i −1.12380 + 0.132761i
\(426\) 0 0
\(427\) 0.354816 0.0950727i 0.000830951 0.000222653i
\(428\) −11.8070 44.0644i −0.0275865 0.102954i
\(429\) 0 0
\(430\) 9.01251 124.776i 0.0209593 0.290177i
\(431\) −46.4787 −0.107839 −0.0539196 0.998545i \(-0.517171\pi\)
−0.0539196 + 0.998545i \(0.517171\pi\)
\(432\) 0 0
\(433\) −430.638 + 430.638i −0.994544 + 0.994544i −0.999985 0.00544093i \(-0.998268\pi\)
0.00544093 + 0.999985i \(0.498268\pi\)
\(434\) 2.45572 1.41781i 0.00565834 0.00326684i
\(435\) 0 0
\(436\) −123.504 + 213.916i −0.283266 + 0.490632i
\(437\) −254.356 + 68.1545i −0.582050 + 0.155960i
\(438\) 0 0
\(439\) 335.332 193.604i 0.763855 0.441012i −0.0668232 0.997765i \(-0.521286\pi\)
0.830678 + 0.556753i \(0.187953\pi\)
\(440\) −203.061 + 38.9885i −0.461502 + 0.0886101i
\(441\) 0 0
\(442\) −443.397 443.397i −1.00316 1.00316i
\(443\) 708.648 + 189.882i 1.59966 + 0.428627i 0.944939 0.327247i \(-0.106121\pi\)
0.654717 + 0.755874i \(0.272788\pi\)
\(444\) 0 0
\(445\) 129.060 + 266.159i 0.290024 + 0.598110i
\(446\) 119.241 206.531i 0.267357 0.463075i
\(447\) 0 0
\(448\) −0.0374297 0.0100292i −8.35483e−5 2.23867e-5i
\(449\) 141.098i 0.314250i −0.987579 0.157125i \(-0.949777\pi\)
0.987579 0.157125i \(-0.0502226\pi\)
\(450\) 0 0
\(451\) −576.139 −1.27747
\(452\) −21.1566 + 78.9577i −0.0468067 + 0.174685i
\(453\) 0 0
\(454\) −710.657 410.298i −1.56532 0.903740i
\(455\) 4.01165 1.94525i 0.00881680 0.00427527i
\(456\) 0 0
\(457\) 190.044 709.254i 0.415851 1.55198i −0.367273 0.930113i \(-0.619709\pi\)
0.783124 0.621865i \(-0.213625\pi\)
\(458\) −732.678 + 732.678i −1.59973 + 1.59973i
\(459\) 0 0
\(460\) −94.2412 490.830i −0.204872 1.06702i
\(461\) 321.041 + 556.060i 0.696402 + 1.20620i 0.969706 + 0.244275i \(0.0785501\pi\)
−0.273304 + 0.961928i \(0.588117\pi\)
\(462\) 0 0
\(463\) −71.8346 268.091i −0.155150 0.579029i −0.999092 0.0425948i \(-0.986438\pi\)
0.843942 0.536434i \(-0.180229\pi\)
\(464\) 127.178 + 73.4265i 0.274091 + 0.158247i
\(465\) 0 0
\(466\) −38.7861 67.1795i −0.0832320 0.144162i
\(467\) 57.4439 + 57.4439i 0.123006 + 0.123006i 0.765930 0.642924i \(-0.222279\pi\)
−0.642924 + 0.765930i \(0.722279\pi\)
\(468\) 0 0
\(469\) 3.37981i 0.00720642i
\(470\) 574.172 + 41.4721i 1.22164 + 0.0882384i
\(471\) 0 0
\(472\) −81.5694 + 21.8565i −0.172817 + 0.0463061i
\(473\) −24.0373 89.7086i −0.0508189 0.189659i
\(474\) 0 0
\(475\) 113.990 + 89.9026i 0.239978 + 0.189269i
\(476\) 2.88948 0.00607034
\(477\) 0 0
\(478\) −544.139 + 544.139i −1.13837 + 1.13837i
\(479\) 419.328 242.099i 0.875423 0.505426i 0.00627671 0.999980i \(-0.498002\pi\)
0.869147 + 0.494554i \(0.164669\pi\)
\(480\) 0 0
\(481\) −333.749 + 578.071i −0.693866 + 1.20181i
\(482\) −61.8668 + 16.5771i −0.128354 + 0.0343924i
\(483\) 0 0
\(484\) −67.7979 + 39.1431i −0.140078 + 0.0808742i
\(485\) −146.653 763.803i −0.302378 1.57485i
\(486\) 0 0
\(487\) −162.179 162.179i −0.333017 0.333017i 0.520714 0.853731i \(-0.325666\pi\)
−0.853731 + 0.520714i \(0.825666\pi\)
\(488\) 23.2906 + 6.24069i 0.0477266 + 0.0127883i
\(489\) 0 0
\(490\) 199.983 576.500i 0.408129 1.17653i
\(491\) 395.023 684.199i 0.804527 1.39348i −0.112083 0.993699i \(-0.535752\pi\)
0.916610 0.399783i \(-0.130914\pi\)
\(492\) 0 0
\(493\) 136.726 + 36.6356i 0.277334 + 0.0743115i
\(494\) 189.285i 0.383168i
\(495\) 0 0
\(496\) 333.448 0.672274
\(497\) −0.995002 + 3.71340i −0.00200202 + 0.00747163i
\(498\) 0 0
\(499\) 422.362 + 243.851i 0.846418 + 0.488680i 0.859441 0.511236i \(-0.170812\pi\)
−0.0130228 + 0.999915i \(0.504145\pi\)
\(500\) −185.777 + 203.496i −0.371554 + 0.406992i
\(501\) 0 0
\(502\) −177.852 + 663.754i −0.354288 + 1.32222i
\(503\) −346.274 + 346.274i −0.688418 + 0.688418i −0.961882 0.273465i \(-0.911830\pi\)
0.273465 + 0.961882i \(0.411830\pi\)
\(504\) 0 0
\(505\) −228.504 154.891i −0.452483 0.306714i
\(506\) −522.164 904.415i −1.03194 1.78738i
\(507\) 0 0
\(508\) −122.474 457.078i −0.241090 0.899760i
\(509\) 362.182 + 209.106i 0.711557 + 0.410818i 0.811637 0.584162i \(-0.198577\pi\)
−0.100080 + 0.994979i \(0.531910\pi\)
\(510\) 0 0
\(511\) 2.63618 + 4.56599i 0.00515886 + 0.00893540i
\(512\) 196.607 + 196.607i 0.383998 + 0.383998i
\(513\) 0 0
\(514\) 15.9365i 0.0310049i
\(515\) −299.151 345.730i −0.580875 0.671320i
\(516\) 0 0
\(517\) 412.804 110.610i 0.798460 0.213947i
\(518\) −2.24066 8.36225i −0.00432559 0.0161433i
\(519\) 0 0
\(520\) 291.894 + 21.0833i 0.561335 + 0.0405449i
\(521\) 17.3149 0.0332341 0.0166170 0.999862i \(-0.494710\pi\)
0.0166170 + 0.999862i \(0.494710\pi\)
\(522\) 0 0
\(523\) 577.571 577.571i 1.10434 1.10434i 0.110462 0.993880i \(-0.464767\pi\)
0.993880 0.110462i \(-0.0352329\pi\)
\(524\) −2.86905 + 1.65645i −0.00547529 + 0.00316116i
\(525\) 0 0
\(526\) 264.640 458.370i 0.503118 0.871427i
\(527\) 310.453 83.1855i 0.589094 0.157847i
\(528\) 0 0
\(529\) −1322.68 + 763.649i −2.50034 + 1.44357i
\(530\) 408.594 + 276.964i 0.770932 + 0.522574i
\(531\) 0 0
\(532\) −0.616757 0.616757i −0.00115932 0.00115932i
\(533\) 787.659 + 211.053i 1.47778 + 0.395971i
\(534\) 0 0
\(535\) 97.7600 + 33.9122i 0.182729 + 0.0633873i
\(536\) −110.927 + 192.132i −0.206954 + 0.358455i
\(537\) 0 0
\(538\) 839.797 + 225.023i 1.56096 + 0.418258i
\(539\) 453.003i 0.840451i
\(540\) 0 0
\(541\) 846.162 1.56407 0.782035 0.623234i \(-0.214182\pi\)
0.782035 + 0.623234i \(0.214182\pi\)
\(542\) −130.404 + 486.674i −0.240598 + 0.897922i
\(543\) 0 0
\(544\) 530.160 + 306.088i 0.974558 + 0.562661i
\(545\) −244.455 504.135i −0.448541 0.925018i
\(546\) 0 0
\(547\) −17.6950 + 66.0385i −0.0323491 + 0.120728i −0.980212 0.197949i \(-0.936572\pi\)
0.947863 + 0.318677i \(0.103239\pi\)
\(548\) −108.876 + 108.876i −0.198678 + 0.198678i
\(549\) 0 0
\(550\) −227.389 + 528.944i −0.413435 + 0.961717i
\(551\) −21.3641 37.0038i −0.0387734 0.0671575i
\(552\) 0 0
\(553\) 0.834291 + 3.11362i 0.00150866 + 0.00563041i
\(554\) −523.410 302.191i −0.944784 0.545471i
\(555\) 0 0
\(556\) 135.327 + 234.392i 0.243393 + 0.421569i
\(557\) −367.003 367.003i −0.658893 0.658893i 0.296225 0.955118i \(-0.404272\pi\)
−0.955118 + 0.296225i \(0.904272\pi\)
\(558\) 0 0
\(559\) 131.449i 0.235151i
\(560\) −5.14197 + 4.44921i −0.00918210 + 0.00794502i
\(561\) 0 0
\(562\) −674.443 + 180.716i −1.20008 + 0.321560i
\(563\) −81.4441 303.953i −0.144661 0.539882i −0.999770 0.0214341i \(-0.993177\pi\)
0.855109 0.518448i \(-0.173490\pi\)
\(564\) 0 0
\(565\) −121.321 140.212i −0.214728 0.248162i
\(566\) 961.053 1.69797
\(567\) 0 0
\(568\) −178.439 + 178.439i −0.314153 + 0.314153i
\(569\) −882.789 + 509.679i −1.55148 + 0.895745i −0.553453 + 0.832880i \(0.686690\pi\)
−0.998022 + 0.0628645i \(0.979976\pi\)
\(570\) 0 0
\(571\) 443.096 767.465i 0.776000 1.34407i −0.158231 0.987402i \(-0.550579\pi\)
0.934231 0.356669i \(-0.116088\pi\)
\(572\) −257.622 + 69.0296i −0.450388 + 0.120681i
\(573\) 0 0
\(574\) −9.15913 + 5.28803i −0.0159567 + 0.00921259i
\(575\) 1041.50 + 447.733i 1.81130 + 0.778667i
\(576\) 0 0
\(577\) 194.509 + 194.509i 0.337105 + 0.337105i 0.855277 0.518172i \(-0.173387\pi\)
−0.518172 + 0.855277i \(0.673387\pi\)
\(578\) 195.070 + 52.2689i 0.337492 + 0.0904307i
\(579\) 0 0
\(580\) 72.9715 35.3839i 0.125813 0.0610067i
\(581\) −2.11722 + 3.66713i −0.00364409 + 0.00631175i
\(582\) 0 0
\(583\) 353.967 + 94.8452i 0.607147 + 0.162685i
\(584\) 346.084i 0.592609i
\(585\) 0 0
\(586\) 105.225 0.179565
\(587\) −207.853 + 775.720i −0.354095 + 1.32150i 0.527526 + 0.849539i \(0.323120\pi\)
−0.881620 + 0.471960i \(0.843547\pi\)
\(588\) 0 0
\(589\) −84.0216 48.5099i −0.142651 0.0823598i
\(590\) −77.0639 + 222.155i −0.130617 + 0.376534i
\(591\) 0 0
\(592\) 263.485 983.338i 0.445075 1.66104i
\(593\) −572.308 + 572.308i −0.965106 + 0.965106i −0.999411 0.0343049i \(-0.989078\pi\)
0.0343049 + 0.999411i \(0.489078\pi\)
\(594\) 0 0
\(595\) −3.67743 + 5.42516i −0.00618055 + 0.00911791i
\(596\) −29.2830 50.7197i −0.0491326 0.0851001i
\(597\) 0 0
\(598\) 382.561 + 1427.74i 0.639734 + 2.38752i
\(599\) 263.198 + 151.957i 0.439396 + 0.253685i 0.703341 0.710852i \(-0.251691\pi\)
−0.263945 + 0.964538i \(0.585024\pi\)
\(600\) 0 0
\(601\) −52.0948 90.2308i −0.0866801 0.150134i 0.819426 0.573185i \(-0.194292\pi\)
−0.906106 + 0.423051i \(0.860959\pi\)
\(602\) −1.20551 1.20551i −0.00200251 0.00200251i
\(603\) 0 0
\(604\) 217.090i 0.359420i
\(605\) 12.7926 177.111i 0.0211449 0.292746i
\(606\) 0 0
\(607\) −283.439 + 75.9472i −0.466950 + 0.125119i −0.484620 0.874725i \(-0.661042\pi\)
0.0176696 + 0.999844i \(0.494375\pi\)
\(608\) −47.8279 178.496i −0.0786642 0.293579i
\(609\) 0 0
\(610\) 50.7721 43.9317i 0.0832330 0.0720193i
\(611\) −604.878 −0.989980
\(612\) 0 0
\(613\) 610.767 610.767i 0.996357 0.996357i −0.00363596 0.999993i \(-0.501157\pi\)
0.999993 + 0.00363596i \(0.00115736\pi\)
\(614\) −259.645 + 149.906i −0.422874 + 0.244147i
\(615\) 0 0
\(616\) −1.40891 + 2.44030i −0.00228719 + 0.00396152i
\(617\) −972.818 + 260.666i −1.57669 + 0.422473i −0.937899 0.346908i \(-0.887232\pi\)
−0.638791 + 0.769381i \(0.720565\pi\)
\(618\) 0 0
\(619\) −189.444 + 109.376i −0.306049 + 0.176697i −0.645157 0.764050i \(-0.723208\pi\)
0.339108 + 0.940747i \(0.389875\pi\)
\(620\) 103.321 152.425i 0.166646 0.245847i
\(621\) 0 0
\(622\) 799.956 + 799.956i 1.28610 + 1.28610i
\(623\) 3.89373 + 1.04332i 0.00624997 + 0.00167467i
\(624\) 0 0
\(625\) −145.638 607.795i −0.233020 0.972472i
\(626\) −370.048 + 640.942i −0.591131 + 1.02387i
\(627\) 0 0
\(628\) −367.708 98.5271i −0.585523 0.156890i
\(629\) 981.257i 1.56003i
\(630\) 0 0
\(631\) −427.714 −0.677835 −0.338917 0.940816i \(-0.610061\pi\)
−0.338917 + 0.940816i \(0.610061\pi\)
\(632\) −54.7639 + 204.382i −0.0866517 + 0.323389i
\(633\) 0 0
\(634\) −190.711 110.107i −0.300805 0.173670i
\(635\) 1014.06 + 351.770i 1.59695 + 0.553968i
\(636\) 0 0
\(637\) −165.945 + 619.316i −0.260511 + 0.972239i
\(638\) 119.823 119.823i 0.187810 0.187810i
\(639\) 0 0
\(640\) −631.982 + 121.343i −0.987472 + 0.189598i
\(641\) 256.912 + 444.984i 0.400798 + 0.694203i 0.993822 0.110982i \(-0.0353995\pi\)
−0.593024 + 0.805185i \(0.702066\pi\)
\(642\) 0 0
\(643\) −50.3713 187.988i −0.0783379 0.292361i 0.915632 0.402019i \(-0.131691\pi\)
−0.993969 + 0.109657i \(0.965025\pi\)
\(644\) −5.89858 3.40555i −0.00915929 0.00528812i
\(645\) 0 0
\(646\) −139.129 240.979i −0.215371 0.373033i
\(647\) 139.726 + 139.726i 0.215960 + 0.215960i 0.806794 0.590833i \(-0.201201\pi\)
−0.590833 + 0.806794i \(0.701201\pi\)
\(648\) 0 0
\(649\) 174.565i 0.268976i
\(650\) 504.636 639.841i 0.776364 0.984370i
\(651\) 0 0
\(652\) 195.975 52.5114i 0.300576 0.0805390i
\(653\) 166.789 + 622.466i 0.255420 + 0.953240i 0.967856 + 0.251503i \(0.0809250\pi\)
−0.712437 + 0.701737i \(0.752408\pi\)
\(654\) 0 0
\(655\) 0.541356 7.49495i 0.000826498 0.0114427i
\(656\) −1243.66 −1.89583
\(657\) 0 0
\(658\) 5.54730 5.54730i 0.00843054 0.00843054i
\(659\) −210.200 + 121.359i −0.318968 + 0.184156i −0.650932 0.759136i \(-0.725622\pi\)
0.331965 + 0.943292i \(0.392289\pi\)
\(660\) 0 0
\(661\) −331.364 + 573.939i −0.501307 + 0.868288i 0.498692 + 0.866779i \(0.333814\pi\)
−0.999999 + 0.00150927i \(0.999520\pi\)
\(662\) 1073.80 287.723i 1.62205 0.434627i
\(663\) 0 0
\(664\) −240.715 + 138.977i −0.362522 + 0.209302i
\(665\) 1.94294 0.373051i 0.00292171 0.000560979i
\(666\) 0 0
\(667\) −235.933 235.933i −0.353722 0.353722i
\(668\) 425.349 + 113.972i 0.636750 + 0.170617i
\(669\) 0 0
\(670\) 269.533 + 555.853i 0.402288 + 0.829631i
\(671\) 24.9219 43.1660i 0.0371414 0.0643308i
\(672\) 0 0
\(673\) −467.643 125.305i −0.694864 0.186188i −0.105935 0.994373i \(-0.533784\pi\)
−0.588929 + 0.808185i \(0.700450\pi\)
\(674\) 72.9670i 0.108260i
\(675\) 0 0
\(676\) 4.95712 0.00733302
\(677\) 113.880 425.004i 0.168212 0.627776i −0.829397 0.558660i \(-0.811316\pi\)
0.997609 0.0691156i \(-0.0220177\pi\)
\(678\) 0 0
\(679\) −9.17906 5.29953i −0.0135185 0.00780490i
\(680\) −387.108 + 187.708i −0.569276 + 0.276042i
\(681\) 0 0
\(682\) 99.5854 371.658i 0.146020 0.544953i
\(683\) 336.034 336.034i 0.491998 0.491998i −0.416938 0.908935i \(-0.636897\pi\)
0.908935 + 0.416938i \(0.136897\pi\)
\(684\) 0 0
\(685\) −65.8544 342.985i −0.0961379 0.500708i
\(686\) −8.31607 14.4039i −0.0121226 0.0209969i
\(687\) 0 0
\(688\) −51.8875 193.647i −0.0754179 0.281463i
\(689\) −449.177 259.332i −0.651926 0.376389i
\(690\) 0 0
\(691\) −465.054 805.496i −0.673015 1.16570i −0.977045 0.213034i \(-0.931665\pi\)
0.304029 0.952663i \(-0.401668\pi\)
\(692\) −53.8977 53.8977i −0.0778869 0.0778869i
\(693\) 0 0
\(694\) 841.075i 1.21192i
\(695\) −612.314 44.2270i −0.881027 0.0636360i
\(696\) 0 0
\(697\) −1157.90 + 310.258i −1.66126 + 0.445134i
\(698\) 38.3309 + 143.053i 0.0549153 + 0.204947i
\(699\) 0 0
\(700\) 0.440541 + 3.72910i 0.000629345 + 0.00532729i
\(701\) 1057.58 1.50868 0.754338 0.656486i \(-0.227958\pi\)
0.754338 + 0.656486i \(0.227958\pi\)
\(702\) 0 0
\(703\) −209.448 + 209.448i −0.297935 + 0.297935i
\(704\) −4.55359 + 2.62902i −0.00646817 + 0.00373440i
\(705\) 0 0
\(706\) −663.280 + 1148.83i −0.939490 + 1.62724i
\(707\) −3.63379 + 0.973672i −0.00513974 + 0.00137719i
\(708\) 0 0
\(709\) 450.749 260.240i 0.635754 0.367053i −0.147223 0.989103i \(-0.547034\pi\)
0.782977 + 0.622051i \(0.213700\pi\)
\(710\) 132.495 + 690.065i 0.186613 + 0.971922i
\(711\) 0 0
\(712\) 187.104 + 187.104i 0.262787 + 0.262787i
\(713\) −731.800 196.085i −1.02637 0.275014i
\(714\) 0 0
\(715\) 198.267 571.552i 0.277297 0.799374i
\(716\) −204.962 + 355.005i −0.286260 + 0.495817i
\(717\) 0 0
\(718\) 823.316 + 220.607i 1.14668 + 0.307252i
\(719\) 1211.89i 1.68553i −0.538285 0.842763i \(-0.680928\pi\)
0.538285 0.842763i \(-0.319072\pi\)
\(720\) 0 0
\(721\) −6.23044 −0.00864139
\(722\) 210.990 787.424i 0.292230 1.09062i
\(723\) 0 0
\(724\) 186.673 + 107.776i 0.257836 + 0.148862i
\(725\) −26.4353 + 182.041i −0.0364625 + 0.251091i
\(726\) 0 0
\(727\) 53.9360 201.292i 0.0741899 0.276880i −0.918859 0.394587i \(-0.870888\pi\)
0.993048 + 0.117707i \(0.0375543\pi\)
\(728\) 2.82010 2.82010i 0.00387377 0.00387377i
\(729\) 0 0
\(730\) 797.680 + 540.705i 1.09271 + 0.740692i
\(731\) −96.6185 167.348i −0.132173 0.228930i
\(732\) 0 0
\(733\) −189.606 707.621i −0.258672 0.965376i −0.966011 0.258502i \(-0.916771\pi\)
0.707339 0.706874i \(-0.249895\pi\)
\(734\) 793.936 + 458.379i 1.08166 + 0.624495i
\(735\) 0 0
\(736\) −721.511 1249.69i −0.980313 1.69795i
\(737\) 324.286 + 324.286i 0.440009 + 0.440009i
\(738\) 0 0
\(739\) 1243.93i 1.68326i −0.540056 0.841629i \(-0.681597\pi\)
0.540056 0.841629i \(-0.318403\pi\)
\(740\) −367.859 425.137i −0.497107 0.574509i
\(741\) 0 0
\(742\) 6.49769 1.74105i 0.00875700 0.00234643i
\(743\) −332.161 1239.64i −0.447054 1.66843i −0.710455 0.703743i \(-0.751511\pi\)
0.263400 0.964687i \(-0.415156\pi\)
\(744\) 0 0
\(745\) 132.497 + 9.57019i 0.177849 + 0.0128459i
\(746\) 829.060 1.11134
\(747\) 0 0
\(748\) 277.240 277.240i 0.370642 0.370642i
\(749\) 1.22121 0.705066i 0.00163045 0.000941343i
\(750\) 0 0
\(751\) −470.274 + 814.539i −0.626198 + 1.08461i 0.362110 + 0.932135i \(0.382056\pi\)
−0.988308 + 0.152471i \(0.951277\pi\)
\(752\) 891.087 238.766i 1.18496 0.317508i
\(753\) 0 0
\(754\) −207.708 + 119.920i −0.275474 + 0.159045i
\(755\) −407.598 276.289i −0.539865 0.365946i
\(756\) 0 0
\(757\) 872.169 + 872.169i 1.15214 + 1.15214i 0.986123 + 0.166015i \(0.0530901\pi\)
0.166015 + 0.986123i \(0.446910\pi\)
\(758\) −490.097 131.321i −0.646566 0.173247i
\(759\) 0 0
\(760\) 122.694 + 42.5615i 0.161439 + 0.0560020i
\(761\) 229.806 398.036i 0.301979 0.523043i −0.674605 0.738179i \(-0.735686\pi\)
0.976584 + 0.215136i \(0.0690194\pi\)
\(762\) 0 0
\(763\) −7.37515 1.97617i −0.00966599 0.00259000i
\(764\) 300.712i 0.393602i
\(765\) 0 0
\(766\) 51.5397 0.0672842
\(767\) 63.9473 238.655i 0.0833733 0.311153i
\(768\) 0 0
\(769\) 775.372 + 447.661i 1.00829 + 0.582134i 0.910689 0.413092i \(-0.135551\pi\)
0.0975969 + 0.995226i \(0.468884\pi\)
\(770\) 3.42338 + 7.05997i 0.00444594 + 0.00916879i
\(771\) 0 0
\(772\) 52.6949 196.660i 0.0682576 0.254741i
\(773\) −94.0446 + 94.0446i −0.121662 + 0.121662i −0.765316 0.643654i \(-0.777417\pi\)
0.643654 + 0.765316i \(0.277417\pi\)
\(774\) 0 0
\(775\) 154.690 + 387.981i 0.199600 + 0.500620i
\(776\) −347.868 602.524i −0.448283 0.776449i
\(777\) 0 0
\(778\) −119.433 445.730i −0.153513 0.572918i
\(779\) 313.377 + 180.928i 0.402281 + 0.232257i
\(780\) 0 0
\(781\) 260.825 + 451.762i 0.333963 + 0.578441i
\(782\) −1536.46 1536.46i −1.96479 1.96479i
\(783\) 0 0
\(784\) 977.861i 1.24727i
\(785\) 652.970 564.997i 0.831809 0.719742i
\(786\) 0 0
\(787\) 899.963 241.144i 1.14354 0.306410i 0.363164 0.931725i \(-0.381696\pi\)
0.780372 + 0.625315i \(0.215030\pi\)
\(788\) −137.666 513.778i −0.174704 0.652003i
\(789\) 0 0
\(790\) 385.514 + 445.541i 0.487993 + 0.563976i
\(791\) −2.52677 −0.00319440
\(792\) 0 0
\(793\) −49.8843 + 49.8843i −0.0629058 + 0.0629058i
\(794\) −721.400 + 416.501i −0.908565 + 0.524560i
\(795\) 0 0
\(796\) −40.1407 + 69.5257i −0.0504280 + 0.0873438i
\(797\) −163.649 + 43.8496i −0.205331 + 0.0550183i −0.360019 0.932945i \(-0.617230\pi\)
0.154687 + 0.987963i \(0.450563\pi\)
\(798\) 0 0
\(799\) 770.071 444.601i 0.963793 0.556446i
\(800\) −314.200 + 730.879i −0.392750 + 0.913599i
\(801\) 0 0
\(802\) −119.900 119.900i −0.149502 0.149502i
\(803\) 691.034 + 185.162i 0.860565 + 0.230588i
\(804\) 0 0
\(805\) 13.9012 6.74068i 0.0172686 0.00837352i
\(806\) −272.293 + 471.626i −0.337833 + 0.585144i
\(807\) 0 0
\(808\) −238.527 63.9130i −0.295206 0.0791003i
\(809\) 1540.82i 1.90459i 0.305175 + 0.952296i \(0.401285\pi\)
−0.305175 + 0.952296i \(0.598715\pi\)
\(810\) 0 0
\(811\) −895.419 −1.10409 −0.552046 0.833813i \(-0.686153\pi\)
−0.552046 + 0.833813i \(0.686153\pi\)
\(812\) 0.286042 1.06752i 0.000352269 0.00131469i
\(813\) 0 0
\(814\) −1017.33 587.355i −1.24979 0.721566i
\(815\) −150.824 + 434.785i −0.185060 + 0.533479i
\(816\) 0 0
\(817\) −15.0972 + 56.3434i −0.0184788 + 0.0689637i
\(818\) 664.048 664.048i 0.811795 0.811795i
\(819\) 0 0
\(820\) −385.357 + 568.501i −0.469947 + 0.693294i
\(821\) 322.268 + 558.185i 0.392531 + 0.679884i 0.992783 0.119927i \(-0.0382661\pi\)
−0.600251 + 0.799811i \(0.704933\pi\)
\(822\) 0 0
\(823\) −56.6061 211.257i −0.0687802 0.256691i 0.922971 0.384870i \(-0.125754\pi\)
−0.991751 + 0.128179i \(0.959087\pi\)
\(824\) −354.182 204.487i −0.429832 0.248164i
\(825\) 0 0
\(826\) 1.60223 + 2.77514i 0.00193975 + 0.00335974i
\(827\) 982.768 + 982.768i 1.18835 + 1.18835i 0.977522 + 0.210831i \(0.0676170\pi\)
0.210831 + 0.977522i \(0.432383\pi\)
\(828\) 0 0
\(829\) 763.031i 0.920424i −0.887809 0.460212i \(-0.847773\pi\)
0.887809 0.460212i \(-0.152227\pi\)
\(830\) −55.7574 + 771.949i −0.0671776 + 0.930059i
\(831\) 0 0
\(832\) 7.18844 1.92614i 0.00863996 0.00231507i
\(833\) −243.948 910.427i −0.292855 1.09295i
\(834\) 0 0
\(835\) −755.327 + 653.564i −0.904584 + 0.782711i
\(836\) −118.353 −0.141571
\(837\) 0 0
\(838\) 402.737 402.737i 0.480593 0.480593i
\(839\) 946.477 546.449i 1.12810 0.651309i 0.184644 0.982805i \(-0.440887\pi\)
0.943457 + 0.331496i \(0.107553\pi\)
\(840\) 0 0
\(841\) −393.430 + 681.440i −0.467812 + 0.810274i
\(842\) 985.940 264.182i 1.17095 0.313755i
\(843\) 0 0
\(844\) −369.598 + 213.388i −0.437913 + 0.252829i
\(845\) −6.30890 + 9.30726i −0.00746615 + 0.0110145i
\(846\) 0 0
\(847\) −1.71114 1.71114i −0.00202024 0.00202024i
\(848\) 764.080 + 204.735i 0.901038 + 0.241432i
\(849\) 0 0
\(850\) −172.154 + 1185.50i −0.202535 + 1.39471i
\(851\) −1156.51 + 2003.14i −1.35900 + 2.35386i
\(852\) 0 0
\(853\) −1588.02 425.510i −1.86169 0.498839i −0.861729 0.507369i \(-0.830618\pi\)
−0.999964 + 0.00853057i \(0.997285\pi\)
\(854\) 0.914971i 0.00107140i
\(855\) 0 0
\(856\) 92.5628 0.108134
\(857\) −85.2695 + 318.230i −0.0994977 + 0.371330i −0.997663 0.0683276i \(-0.978234\pi\)
0.898165 + 0.439658i \(0.144900\pi\)
\(858\) 0 0
\(859\) 1361.73 + 786.197i 1.58525 + 0.915247i 0.994074 + 0.108707i \(0.0346710\pi\)
0.591180 + 0.806540i \(0.298662\pi\)
\(860\) −104.597 36.2839i −0.121624 0.0421906i
\(861\) 0 0
\(862\) −29.9639 + 111.827i −0.0347609 + 0.129729i
\(863\) −458.505 + 458.505i −0.531292 + 0.531292i −0.920957 0.389665i \(-0.872591\pi\)
0.389665 + 0.920957i \(0.372591\pi\)
\(864\) 0 0
\(865\) 169.791 32.6006i 0.196290 0.0376885i
\(866\) 758.481 + 1313.73i 0.875844 + 1.51701i
\(867\) 0 0
\(868\) −0.649494 2.42395i −0.000748265 0.00279256i
\(869\) 378.794 + 218.697i 0.435897 + 0.251665i
\(870\) 0 0
\(871\) −324.550 562.137i −0.372618 0.645393i
\(872\) −354.396 354.396i −0.406418 0.406418i
\(873\) 0 0
\(874\) 655.913i 0.750472i
\(875\) −7.56226 3.91887i −0.00864259 0.00447870i
\(876\) 0 0
\(877\) −1041.72 + 279.129i −1.18783 + 0.318277i −0.798026 0.602623i \(-0.794122\pi\)
−0.389800 + 0.920900i \(0.627456\pi\)
\(878\) −249.625 931.615i −0.284311 1.06106i
\(879\) 0 0
\(880\) −66.4695 + 920.256i −0.0755335 + 1.04574i
\(881\) −1585.15 −1.79927 −0.899633 0.436647i \(-0.856166\pi\)
−0.899633 + 0.436647i \(0.856166\pi\)
\(882\) 0 0
\(883\) −1004.45 + 1004.45i −1.13755 + 1.13755i −0.148657 + 0.988889i \(0.547495\pi\)
−0.988889 + 0.148657i \(0.952505\pi\)
\(884\) −480.584 + 277.466i −0.543648 + 0.313875i
\(885\) 0 0
\(886\) 913.702 1582.58i 1.03127 1.78621i
\(887\) 302.408 81.0299i 0.340933 0.0913528i −0.0842901 0.996441i \(-0.526862\pi\)
0.425223 + 0.905088i \(0.360196\pi\)
\(888\) 0 0
\(889\) 12.6676 7.31362i 0.0142492 0.00822680i
\(890\) 723.576 138.929i 0.813006 0.156100i
\(891\) 0 0
\(892\) −149.235 149.235i −0.167304 0.167304i
\(893\) −259.270 69.4713i −0.290336 0.0777954i
\(894\) 0 0
\(895\) −405.687 836.641i −0.453281 0.934794i
\(896\) −4.38491 + 7.59489i −0.00489387 + 0.00847644i
\(897\) 0 0
\(898\) −339.479 90.9632i −0.378039 0.101295i
\(899\) 122.932i 0.136743i
\(900\) 0 0
\(901\) 762.464 0.846242
\(902\) −371.425 + 1386.18i −0.411779 + 1.53678i
\(903\) 0 0
\(904\) −143.639 82.9302i −0.158893 0.0917370i
\(905\) −439.933 + 213.324i −0.486114 + 0.235717i
\(906\) 0 0
\(907\) 95.9237 357.992i 0.105759 0.394699i −0.892671 0.450709i \(-0.851171\pi\)
0.998430 + 0.0560100i \(0.0178379\pi\)
\(908\) −513.506 + 513.506i −0.565536 + 0.565536i
\(909\) 0 0
\(910\) −2.09399 10.9060i −0.00230109 0.0119846i
\(911\) −490.084 848.851i −0.537963 0.931779i −0.999014 0.0444052i \(-0.985861\pi\)
0.461051 0.887374i \(-0.347473\pi\)
\(912\) 0 0
\(913\) 148.711 + 554.997i 0.162882 + 0.607883i
\(914\) −1583.93 914.484i −1.73297 1.00053i
\(915\) 0 0
\(916\) 458.489 + 794.127i 0.500534 + 0.866951i
\(917\) −0.0724117 0.0724117i −7.89659e−5 7.89659e-5i
\(918\) 0 0
\(919\) 1321.17i 1.43762i 0.695205 + 0.718811i \(0.255313\pi\)
−0.695205 + 0.718811i \(0.744687\pi\)
\(920\) 1011.47 + 73.0581i 1.09943 + 0.0794110i
\(921\) 0 0
\(922\) 1544.84 413.938i 1.67553 0.448956i
\(923\) −191.092 713.166i −0.207034 0.772661i
\(924\) 0 0
\(925\) 1266.39 149.606i 1.36907 0.161736i
\(926\) −691.330 −0.746577
\(927\) 0 0
\(928\) 165.567 165.567i 0.178413 0.178413i
\(929\) 672.297 388.151i 0.723678 0.417816i −0.0924267 0.995719i \(-0.529462\pi\)
0.816105 + 0.577904i \(0.196129\pi\)
\(930\) 0 0
\(931\) −142.259 + 246.400i −0.152802 + 0.264662i
\(932\) −66.3103 + 17.7678i −0.0711484 + 0.0190642i
\(933\) 0 0
\(934\) 175.242 101.176i 0.187625 0.108325i
\(935\) 167.691 + 873.376i 0.179349 + 0.934092i
\(936\) 0 0
\(937\) 295.586 + 295.586i 0.315459 + 0.315459i 0.847020 0.531561i \(-0.178394\pi\)
−0.531561 + 0.847020i \(0.678394\pi\)
\(938\) 8.13175 + 2.17890i 0.00866925 + 0.00232292i
\(939\) 0 0
\(940\) 166.964 481.315i 0.177622 0.512037i
\(941\) 48.8020 84.5275i 0.0518618 0.0898273i −0.838929 0.544241i \(-0.816818\pi\)
0.890791 + 0.454413i \(0.150151\pi\)
\(942\) 0 0
\(943\) 2729.40 + 731.341i 2.89438 + 0.775548i
\(944\) 376.820i 0.399174i
\(945\) 0 0
\(946\) −231.333 −0.244538
\(947\) −47.4532 + 177.098i −0.0501090 + 0.187009i −0.986444 0.164099i \(-0.947528\pi\)
0.936335 + 0.351108i \(0.114195\pi\)
\(948\) 0 0
\(949\) −876.908 506.283i −0.924034 0.533491i
\(950\) 289.790 216.298i 0.305042 0.227682i
\(951\) 0 0
\(952\) −1.51743 + 5.66313i −0.00159394 + 0.00594866i
\(953\) 16.8810 16.8810i 0.0177135 0.0177135i −0.698195 0.715908i \(-0.746013\pi\)
0.715908 + 0.698195i \(0.246013\pi\)
\(954\) 0 0
\(955\) 564.603 + 382.714i 0.591207 + 0.400748i
\(956\) 340.507 + 589.776i 0.356179 + 0.616920i
\(957\) 0 0
\(958\) −312.153 1164.97i −0.325838 1.21604i
\(959\) −4.12185 2.37975i −0.00429807 0.00248149i
\(960\) 0 0
\(961\) 340.934 + 590.514i 0.354770 + 0.614479i
\(962\) 1175.66 + 1175.66i 1.22210 + 1.22210i
\(963\) 0 0
\(964\) 56.6819i 0.0587987i
\(965\) 302.175 + 349.226i 0.313135 + 0.361892i
\(966\) 0 0
\(967\) 1161.19 311.140i 1.20082 0.321758i 0.397665 0.917531i \(-0.369821\pi\)
0.803153 + 0.595772i \(0.203154\pi\)
\(968\) −41.1125 153.434i −0.0424716 0.158506i
\(969\) 0 0
\(970\) −1932.24 139.564i −1.99200 0.143881i
\(971\) 608.975 0.627163 0.313582 0.949561i \(-0.398471\pi\)
0.313582 + 0.949561i \(0.398471\pi\)
\(972\) 0 0
\(973\) −5.91580 + 5.91580i −0.00607996 + 0.00607996i
\(974\) −494.753 + 285.646i −0.507960 + 0.293271i
\(975\) 0 0
\(976\) 53.7969 93.1790i 0.0551198 0.0954702i
\(977\) −85.2493 + 22.8425i −0.0872562 + 0.0233802i −0.302183 0.953250i \(-0.597715\pi\)
0.214927 + 0.976630i \(0.431049\pi\)
\(978\) 0 0
\(979\) 473.701 273.491i 0.483862 0.279358i
\(980\) −446.998 302.996i −0.456120 0.309180i
\(981\) 0 0
\(982\) −1391.51 1391.51i −1.41701 1.41701i
\(983\) −1378.97 369.494i −1.40282 0.375884i −0.523461 0.852049i \(-0.675360\pi\)
−0.879356 + 0.476166i \(0.842026\pi\)
\(984\) 0 0
\(985\) 1139.85 + 395.406i 1.15721 + 0.401428i
\(986\) 176.289 305.341i 0.178792 0.309676i
\(987\) 0 0
\(988\) 161.805 + 43.3555i 0.163770 + 0.0438821i
\(989\) 455.499i 0.460565i
\(990\) 0 0
\(991\) 14.7275 0.0148613 0.00743063 0.999972i \(-0.497635\pi\)
0.00743063 + 0.999972i \(0.497635\pi\)
\(992\) 137.604 513.545i 0.138714 0.517687i
\(993\) 0 0
\(994\) 8.29290 + 4.78791i 0.00834296 + 0.00481681i
\(995\) −79.4514 163.851i −0.0798506 0.164675i
\(996\) 0 0
\(997\) −59.6878 + 222.758i −0.0598674 + 0.223428i −0.989378 0.145368i \(-0.953563\pi\)
0.929510 + 0.368796i \(0.120230\pi\)
\(998\) 858.989 858.989i 0.860710 0.860710i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 135.3.l.a.37.9 40
3.2 odd 2 45.3.k.a.22.2 yes 40
5.3 odd 4 inner 135.3.l.a.118.2 40
9.2 odd 6 45.3.k.a.7.9 40
9.4 even 3 405.3.g.g.82.9 20
9.5 odd 6 405.3.g.h.82.2 20
9.7 even 3 inner 135.3.l.a.127.2 40
15.2 even 4 225.3.o.b.193.2 40
15.8 even 4 45.3.k.a.13.9 yes 40
15.14 odd 2 225.3.o.b.157.9 40
45.2 even 12 225.3.o.b.43.9 40
45.13 odd 12 405.3.g.g.163.9 20
45.23 even 12 405.3.g.h.163.2 20
45.29 odd 6 225.3.o.b.7.2 40
45.38 even 12 45.3.k.a.43.2 yes 40
45.43 odd 12 inner 135.3.l.a.73.9 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
45.3.k.a.7.9 40 9.2 odd 6
45.3.k.a.13.9 yes 40 15.8 even 4
45.3.k.a.22.2 yes 40 3.2 odd 2
45.3.k.a.43.2 yes 40 45.38 even 12
135.3.l.a.37.9 40 1.1 even 1 trivial
135.3.l.a.73.9 40 45.43 odd 12 inner
135.3.l.a.118.2 40 5.3 odd 4 inner
135.3.l.a.127.2 40 9.7 even 3 inner
225.3.o.b.7.2 40 45.29 odd 6
225.3.o.b.43.9 40 45.2 even 12
225.3.o.b.157.9 40 15.14 odd 2
225.3.o.b.193.2 40 15.2 even 4
405.3.g.g.82.9 20 9.4 even 3
405.3.g.g.163.9 20 45.13 odd 12
405.3.g.h.82.2 20 9.5 odd 6
405.3.g.h.163.2 20 45.23 even 12