Properties

Label 2-1344-7.6-c2-0-26
Degree $2$
Conductor $1344$
Sign $-0.106 - 0.994i$
Analytic cond. $36.6213$
Root an. cond. $6.05155$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.73i·3-s + 2.55i·5-s + (6.95 − 0.748i)7-s − 2.99·9-s + 5.82·11-s + 21.8i·13-s − 4.42·15-s − 16.7i·17-s − 1.37i·19-s + (1.29 + 12.0i)21-s + 10.2·23-s + 18.4·25-s − 5.19i·27-s + 32.1·29-s + 35.1i·31-s + ⋯
L(s)  = 1  + 0.577i·3-s + 0.511i·5-s + (0.994 − 0.106i)7-s − 0.333·9-s + 0.529·11-s + 1.67i·13-s − 0.295·15-s − 0.983i·17-s − 0.0722i·19-s + (0.0617 + 0.574i)21-s + 0.447·23-s + 0.738·25-s − 0.192i·27-s + 1.10·29-s + 1.13i·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1344 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.106 - 0.994i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1344 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.106 - 0.994i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1344\)    =    \(2^{6} \cdot 3 \cdot 7\)
Sign: $-0.106 - 0.994i$
Analytic conductor: \(36.6213\)
Root analytic conductor: \(6.05155\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{1344} (769, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1344,\ (\ :1),\ -0.106 - 0.994i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(2.227804169\)
\(L(\frac12)\) \(\approx\) \(2.227804169\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - 1.73iT \)
7 \( 1 + (-6.95 + 0.748i)T \)
good5 \( 1 - 2.55iT - 25T^{2} \)
11 \( 1 - 5.82T + 121T^{2} \)
13 \( 1 - 21.8iT - 169T^{2} \)
17 \( 1 + 16.7iT - 289T^{2} \)
19 \( 1 + 1.37iT - 361T^{2} \)
23 \( 1 - 10.2T + 529T^{2} \)
29 \( 1 - 32.1T + 841T^{2} \)
31 \( 1 - 35.1iT - 961T^{2} \)
37 \( 1 + 47.2T + 1.36e3T^{2} \)
41 \( 1 + 12.2iT - 1.68e3T^{2} \)
43 \( 1 + 20.4T + 1.84e3T^{2} \)
47 \( 1 - 86.4iT - 2.20e3T^{2} \)
53 \( 1 - 51.3T + 2.80e3T^{2} \)
59 \( 1 + 41.5iT - 3.48e3T^{2} \)
61 \( 1 + 103. iT - 3.72e3T^{2} \)
67 \( 1 + 25.5T + 4.48e3T^{2} \)
71 \( 1 - 74.8T + 5.04e3T^{2} \)
73 \( 1 + 6.02iT - 5.32e3T^{2} \)
79 \( 1 + 20.8T + 6.24e3T^{2} \)
83 \( 1 - 141. iT - 6.88e3T^{2} \)
89 \( 1 - 137. iT - 7.92e3T^{2} \)
97 \( 1 + 56.0iT - 9.40e3T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.501047317750275120683440636241, −8.968002324215252887118287347292, −8.150653010580272008674917387100, −6.94654893014624009688112344440, −6.63863963170015865392140101298, −5.14412100041082639480528190151, −4.64621665500594043176242773661, −3.65583433838921408188143614257, −2.51736461018779686275167987092, −1.29264114720093189426675910369, 0.71095558984465277228253110661, 1.64188781652339768451396893475, 2.87946780786172906547443479555, 4.08339411074828436185207695537, 5.15485858470190454315687876143, 5.74496546480110529526638011402, 6.81808941805668289232326877121, 7.72055988752756837801307892875, 8.456595281566565520461586495159, 8.804919644975634442301034562591

Graph of the $Z$-function along the critical line