L(s) = 1 | − 1.73i·3-s + 6.92i·5-s + 7·7-s − 2.99·9-s + 18·11-s + 20.7i·13-s + 11.9·15-s + 13.8i·17-s + 20.7i·19-s − 12.1i·21-s − 18·23-s − 22.9·25-s + 5.19i·27-s − 18·29-s − 41.5i·31-s + ⋯ |
L(s) = 1 | − 0.577i·3-s + 1.38i·5-s + 7-s − 0.333·9-s + 1.63·11-s + 1.59i·13-s + 0.799·15-s + 0.815i·17-s + 1.09i·19-s − 0.577i·21-s − 0.782·23-s − 0.919·25-s + 0.192i·27-s − 0.620·29-s − 1.34i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1344 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -i\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1344 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & -i\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(2.141030686\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.141030686\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + 1.73iT \) |
| 7 | \( 1 - 7T \) |
good | 5 | \( 1 - 6.92iT - 25T^{2} \) |
| 11 | \( 1 - 18T + 121T^{2} \) |
| 13 | \( 1 - 20.7iT - 169T^{2} \) |
| 17 | \( 1 - 13.8iT - 289T^{2} \) |
| 19 | \( 1 - 20.7iT - 361T^{2} \) |
| 23 | \( 1 + 18T + 529T^{2} \) |
| 29 | \( 1 + 18T + 841T^{2} \) |
| 31 | \( 1 + 41.5iT - 961T^{2} \) |
| 37 | \( 1 + 10T + 1.36e3T^{2} \) |
| 41 | \( 1 + 55.4iT - 1.68e3T^{2} \) |
| 43 | \( 1 + 38T + 1.84e3T^{2} \) |
| 47 | \( 1 - 27.7iT - 2.20e3T^{2} \) |
| 53 | \( 1 + 18T + 2.80e3T^{2} \) |
| 59 | \( 1 - 6.92iT - 3.48e3T^{2} \) |
| 61 | \( 1 - 20.7iT - 3.72e3T^{2} \) |
| 67 | \( 1 - 26T + 4.48e3T^{2} \) |
| 71 | \( 1 + 18T + 5.04e3T^{2} \) |
| 73 | \( 1 - 41.5iT - 5.32e3T^{2} \) |
| 79 | \( 1 + 2T + 6.24e3T^{2} \) |
| 83 | \( 1 + 34.6iT - 6.88e3T^{2} \) |
| 89 | \( 1 - 7.92e3T^{2} \) |
| 97 | \( 1 - 166. iT - 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.602605104720060766718319243010, −8.755843016299506426781056845066, −7.86909167921907263944406842532, −7.08768311876702985391768761487, −6.44890969133572737378472561029, −5.81257097993710333034875811247, −4.19880774110073855862499470868, −3.70472489668587406584755416517, −2.10870947309227642330016853983, −1.58423021984063384616590059017,
0.62922715952750465348233519727, 1.59242228671090349878653680854, 3.18476358289176638389719905918, 4.28927662196642344201082297164, 4.96269063600235531505415596553, 5.52215884897579178714746600947, 6.74402876735082216259949767497, 7.891083066568777430352574356538, 8.546447340265239219768093611550, 9.130134389480657130215946112903