Properties

Label 2-1344-7.6-c2-0-23
Degree $2$
Conductor $1344$
Sign $-i$
Analytic cond. $36.6213$
Root an. cond. $6.05155$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.73i·3-s + 6.92i·5-s + 7·7-s − 2.99·9-s + 18·11-s + 20.7i·13-s + 11.9·15-s + 13.8i·17-s + 20.7i·19-s − 12.1i·21-s − 18·23-s − 22.9·25-s + 5.19i·27-s − 18·29-s − 41.5i·31-s + ⋯
L(s)  = 1  − 0.577i·3-s + 1.38i·5-s + 7-s − 0.333·9-s + 1.63·11-s + 1.59i·13-s + 0.799·15-s + 0.815i·17-s + 1.09i·19-s − 0.577i·21-s − 0.782·23-s − 0.919·25-s + 0.192i·27-s − 0.620·29-s − 1.34i·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1344 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -i\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1344 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & -i\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1344\)    =    \(2^{6} \cdot 3 \cdot 7\)
Sign: $-i$
Analytic conductor: \(36.6213\)
Root analytic conductor: \(6.05155\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{1344} (769, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1344,\ (\ :1),\ -i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(2.141030686\)
\(L(\frac12)\) \(\approx\) \(2.141030686\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + 1.73iT \)
7 \( 1 - 7T \)
good5 \( 1 - 6.92iT - 25T^{2} \)
11 \( 1 - 18T + 121T^{2} \)
13 \( 1 - 20.7iT - 169T^{2} \)
17 \( 1 - 13.8iT - 289T^{2} \)
19 \( 1 - 20.7iT - 361T^{2} \)
23 \( 1 + 18T + 529T^{2} \)
29 \( 1 + 18T + 841T^{2} \)
31 \( 1 + 41.5iT - 961T^{2} \)
37 \( 1 + 10T + 1.36e3T^{2} \)
41 \( 1 + 55.4iT - 1.68e3T^{2} \)
43 \( 1 + 38T + 1.84e3T^{2} \)
47 \( 1 - 27.7iT - 2.20e3T^{2} \)
53 \( 1 + 18T + 2.80e3T^{2} \)
59 \( 1 - 6.92iT - 3.48e3T^{2} \)
61 \( 1 - 20.7iT - 3.72e3T^{2} \)
67 \( 1 - 26T + 4.48e3T^{2} \)
71 \( 1 + 18T + 5.04e3T^{2} \)
73 \( 1 - 41.5iT - 5.32e3T^{2} \)
79 \( 1 + 2T + 6.24e3T^{2} \)
83 \( 1 + 34.6iT - 6.88e3T^{2} \)
89 \( 1 - 7.92e3T^{2} \)
97 \( 1 - 166. iT - 9.40e3T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.602605104720060766718319243010, −8.755843016299506426781056845066, −7.86909167921907263944406842532, −7.08768311876702985391768761487, −6.44890969133572737378472561029, −5.81257097993710333034875811247, −4.19880774110073855862499470868, −3.70472489668587406584755416517, −2.10870947309227642330016853983, −1.58423021984063384616590059017, 0.62922715952750465348233519727, 1.59242228671090349878653680854, 3.18476358289176638389719905918, 4.28927662196642344201082297164, 4.96269063600235531505415596553, 5.52215884897579178714746600947, 6.74402876735082216259949767497, 7.891083066568777430352574356538, 8.546447340265239219768093611550, 9.130134389480657130215946112903

Graph of the $Z$-function along the critical line