L(s) = 1 | − 3-s + 5-s + 7-s + 5·11-s − 15-s + 4·17-s + 8·19-s − 21-s + 4·23-s + 5·25-s + 27-s + 10·29-s − 3·31-s − 5·33-s + 35-s − 4·37-s − 4·43-s + 6·47-s − 6·49-s − 4·51-s − 9·53-s + 5·55-s − 8·57-s − 11·59-s − 6·61-s − 2·67-s − 4·69-s + ⋯ |
L(s) = 1 | − 0.577·3-s + 0.447·5-s + 0.377·7-s + 1.50·11-s − 0.258·15-s + 0.970·17-s + 1.83·19-s − 0.218·21-s + 0.834·23-s + 25-s + 0.192·27-s + 1.85·29-s − 0.538·31-s − 0.870·33-s + 0.169·35-s − 0.657·37-s − 0.609·43-s + 0.875·47-s − 6/7·49-s − 0.560·51-s − 1.23·53-s + 0.674·55-s − 1.05·57-s − 1.43·59-s − 0.768·61-s − 0.244·67-s − 0.481·69-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1806336 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1806336 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.923887369\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.923887369\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.703020070677481457449985748367, −9.498223138964229223370296265003, −9.042556911183410788568345235482, −8.669353540586289696661026013304, −8.316785648138920280600102204253, −7.63989544819864890239188923328, −7.31814192506636318218101810727, −7.00570008998866287603378591154, −6.39970955248528460265734472871, −6.10967083808758111012858445136, −5.77572975485209945145753262008, −5.04818452485235001522858362991, −4.82175612564775978339069600072, −4.57353053222339915448115060498, −3.51829934973211870491450887760, −3.33703807115261084534040867395, −2.87041644261094250076542035864, −1.86381301376214043548103418804, −1.25290607224779742412771481131, −0.887446126835043527403270575874,
0.887446126835043527403270575874, 1.25290607224779742412771481131, 1.86381301376214043548103418804, 2.87041644261094250076542035864, 3.33703807115261084534040867395, 3.51829934973211870491450887760, 4.57353053222339915448115060498, 4.82175612564775978339069600072, 5.04818452485235001522858362991, 5.77572975485209945145753262008, 6.10967083808758111012858445136, 6.39970955248528460265734472871, 7.00570008998866287603378591154, 7.31814192506636318218101810727, 7.63989544819864890239188923328, 8.316785648138920280600102204253, 8.669353540586289696661026013304, 9.042556911183410788568345235482, 9.498223138964229223370296265003, 9.703020070677481457449985748367