L(s) = 1 | + 2-s − 4-s + (0.280 − 2.21i)5-s + 3.46i·7-s − 3·8-s + (0.280 − 2.21i)10-s + 0.972i·11-s − 4.43i·13-s + 3.46i·14-s − 16-s − 2·17-s − 3.46i·19-s + (−0.280 + 2.21i)20-s + 0.972i·22-s − 3.46i·23-s + ⋯ |
L(s) = 1 | + 0.707·2-s − 0.5·4-s + (0.125 − 0.992i)5-s + 1.30i·7-s − 1.06·8-s + (0.0887 − 0.701i)10-s + 0.293i·11-s − 1.23i·13-s + 0.925i·14-s − 0.250·16-s − 0.485·17-s − 0.794i·19-s + (−0.0627 + 0.496i)20-s + 0.207i·22-s − 0.722i·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1305 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.734 + 0.678i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1305 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.734 + 0.678i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.8887959658\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8887959658\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 + (-0.280 + 2.21i)T \) |
| 29 | \( 1 + (4.12 + 3.46i)T \) |
good | 2 | \( 1 - T + 2T^{2} \) |
| 7 | \( 1 - 3.46iT - 7T^{2} \) |
| 11 | \( 1 - 0.972iT - 11T^{2} \) |
| 13 | \( 1 + 4.43iT - 13T^{2} \) |
| 17 | \( 1 + 2T + 17T^{2} \) |
| 19 | \( 1 + 3.46iT - 19T^{2} \) |
| 23 | \( 1 + 3.46iT - 23T^{2} \) |
| 31 | \( 1 + 7.90iT - 31T^{2} \) |
| 37 | \( 1 + 7.12T + 37T^{2} \) |
| 41 | \( 1 - 8.87iT - 41T^{2} \) |
| 43 | \( 1 + 5.43T + 43T^{2} \) |
| 47 | \( 1 + 11.6T + 47T^{2} \) |
| 53 | \( 1 + 4.43iT - 53T^{2} \) |
| 59 | \( 1 - 1.12T + 59T^{2} \) |
| 61 | \( 1 - 1.94iT - 61T^{2} \) |
| 67 | \( 1 + 12.3iT - 67T^{2} \) |
| 71 | \( 1 - 2.24T + 71T^{2} \) |
| 73 | \( 1 - 7.12T + 73T^{2} \) |
| 79 | \( 1 - 14.8iT - 79T^{2} \) |
| 83 | \( 1 + 10.3iT - 83T^{2} \) |
| 89 | \( 1 - 8.87iT - 89T^{2} \) |
| 97 | \( 1 + 8.24T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.410359145687924732164836682948, −8.437882999601232196066081946763, −8.117682176864752141529975119799, −6.51569285147248066793496773061, −5.66939374135429044815198702286, −5.11962945969051842312858822497, −4.41564703159337459781153452433, −3.20763896773857598840161580957, −2.14819968035149791608343776060, −0.28452335447041207470936144583,
1.73127445152277369859802967010, 3.37889300479327093436981769400, 3.75756267574416350282101829013, 4.74999179007308745763572296139, 5.73915444991662464568455798372, 6.77204157401542369135781688130, 7.14901195118561412342305351381, 8.344330039227153852752416381318, 9.234134313774254958538745800171, 10.05304080368338921130622555501