L(s) = 1 | − 0.156i·2-s + 1.97·4-s + (−1.28 + 1.82i)5-s − 1.09i·7-s − 0.623i·8-s + (0.286 + 0.201i)10-s + 4.40·11-s + 3.97i·13-s − 0.171·14-s + 3.85·16-s + 6.22i·17-s − 6.97·19-s + (−2.54 + 3.61i)20-s − 0.690i·22-s + 0.780i·23-s + ⋯ |
L(s) = 1 | − 0.110i·2-s + 0.987·4-s + (−0.575 + 0.817i)5-s − 0.413i·7-s − 0.220i·8-s + (0.0906 + 0.0637i)10-s + 1.32·11-s + 1.10i·13-s − 0.0458·14-s + 0.963·16-s + 1.50i·17-s − 1.60·19-s + (−0.568 + 0.807i)20-s − 0.147i·22-s + 0.162i·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1305 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.575 - 0.817i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1305 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.575 - 0.817i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.927869575\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.927869575\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 + (1.28 - 1.82i)T \) |
| 29 | \( 1 + T \) |
good | 2 | \( 1 + 0.156iT - 2T^{2} \) |
| 7 | \( 1 + 1.09iT - 7T^{2} \) |
| 11 | \( 1 - 4.40T + 11T^{2} \) |
| 13 | \( 1 - 3.97iT - 13T^{2} \) |
| 17 | \( 1 - 6.22iT - 17T^{2} \) |
| 19 | \( 1 + 6.97T + 19T^{2} \) |
| 23 | \( 1 - 0.780iT - 23T^{2} \) |
| 31 | \( 1 - 6.40T + 31T^{2} \) |
| 37 | \( 1 - 1.09iT - 37T^{2} \) |
| 41 | \( 1 + 41T^{2} \) |
| 43 | \( 1 + 0.376iT - 43T^{2} \) |
| 47 | \( 1 + 4.75iT - 47T^{2} \) |
| 53 | \( 1 - 11.2iT - 53T^{2} \) |
| 59 | \( 1 - 10T + 59T^{2} \) |
| 61 | \( 1 + 1.14T + 61T^{2} \) |
| 67 | \( 1 - 5.90iT - 67T^{2} \) |
| 71 | \( 1 + 2T + 71T^{2} \) |
| 73 | \( 1 - 8.72iT - 73T^{2} \) |
| 79 | \( 1 - 5.54T + 79T^{2} \) |
| 83 | \( 1 + 6.22iT - 83T^{2} \) |
| 89 | \( 1 + 10.8T + 89T^{2} \) |
| 97 | \( 1 - 17.4iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.07270060743804332958132930519, −8.855347678350735152666523664304, −8.097995221158992988512362284975, −7.06222094954113082768768569278, −6.58731441746698825582141495976, −6.05014955958560509747000476029, −4.11713908680698439728966498775, −3.90199322259851344905446783997, −2.51511411204060374085232249140, −1.49877639899808921747178737467,
0.832729770966936186513071122928, 2.21276395948240283661252444857, 3.32157852128560787664348327722, 4.40789994873025905437514421584, 5.37322401488110472540262596178, 6.29322061478904870846402049832, 7.03009278888006840627929804395, 7.958412690487321856105129708969, 8.605103198488243247445698829674, 9.412784290887377307105659624769