Properties

Degree $2$
Conductor $128$
Sign $-0.432 - 0.901i$
Motivic weight $4$
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + (−9.42 + 9.42i)3-s + (2.84 − 2.84i)5-s + 76.7·7-s − 96.6i·9-s + (121. + 121. i)11-s + (−27.1 − 27.1i)13-s + 53.6i·15-s − 88.0·17-s + (−261. + 261. i)19-s + (−723. + 723. i)21-s − 93.4·23-s + 608. i·25-s + (147. + 147. i)27-s + (−272. − 272. i)29-s + 1.23e3i·31-s + ⋯
L(s)  = 1  + (−1.04 + 1.04i)3-s + (0.113 − 0.113i)5-s + 1.56·7-s − 1.19i·9-s + (1.00 + 1.00i)11-s + (−0.160 − 0.160i)13-s + 0.238i·15-s − 0.304·17-s + (−0.723 + 0.723i)19-s + (−1.64 + 1.64i)21-s − 0.176·23-s + 0.974i·25-s + (0.202 + 0.202i)27-s + (−0.324 − 0.324i)29-s + 1.28i·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 128 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.432 - 0.901i)\, \overline{\Lambda}(5-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 128 ^{s/2} \, \Gamma_{\C}(s+2) \, L(s)\cr =\mathstrut & (-0.432 - 0.901i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(128\)    =    \(2^{7}\)
Sign: $-0.432 - 0.901i$
Motivic weight: \(4\)
Character: $\chi_{128} (95, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 128,\ (\ :2),\ -0.432 - 0.901i)\)

Particular Values

\(L(\frac{5}{2})\) \(\approx\) \(0.709564 + 1.12716i\)
\(L(\frac12)\) \(\approx\) \(0.709564 + 1.12716i\)
\(L(3)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
good3 \( 1 + (9.42 - 9.42i)T - 81iT^{2} \)
5 \( 1 + (-2.84 + 2.84i)T - 625iT^{2} \)
7 \( 1 - 76.7T + 2.40e3T^{2} \)
11 \( 1 + (-121. - 121. i)T + 1.46e4iT^{2} \)
13 \( 1 + (27.1 + 27.1i)T + 2.85e4iT^{2} \)
17 \( 1 + 88.0T + 8.35e4T^{2} \)
19 \( 1 + (261. - 261. i)T - 1.30e5iT^{2} \)
23 \( 1 + 93.4T + 2.79e5T^{2} \)
29 \( 1 + (272. + 272. i)T + 7.07e5iT^{2} \)
31 \( 1 - 1.23e3iT - 9.23e5T^{2} \)
37 \( 1 + (-1.04e3 + 1.04e3i)T - 1.87e6iT^{2} \)
41 \( 1 - 915. iT - 2.82e6T^{2} \)
43 \( 1 + (-1.11e3 - 1.11e3i)T + 3.41e6iT^{2} \)
47 \( 1 - 1.72e3iT - 4.87e6T^{2} \)
53 \( 1 + (734. - 734. i)T - 7.89e6iT^{2} \)
59 \( 1 + (1.20e3 + 1.20e3i)T + 1.21e7iT^{2} \)
61 \( 1 + (580. + 580. i)T + 1.38e7iT^{2} \)
67 \( 1 + (1.48e3 - 1.48e3i)T - 2.01e7iT^{2} \)
71 \( 1 + 5.57e3T + 2.54e7T^{2} \)
73 \( 1 - 6.61e3iT - 2.83e7T^{2} \)
79 \( 1 + 5.39e3iT - 3.89e7T^{2} \)
83 \( 1 + (2.55e3 - 2.55e3i)T - 4.74e7iT^{2} \)
89 \( 1 + 1.09e4iT - 6.27e7T^{2} \)
97 \( 1 - 4.71e3T + 8.85e7T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.64415378039170035825904993422, −11.64029160835191246524945840093, −11.01399446080414315826690151568, −10.03103642509175481121637925260, −8.959462848016159626313386039119, −7.55406738021391359742102578925, −6.02554472603940684030886366223, −4.86047762477464586699907536942, −4.19570725022014929573627267819, −1.58898800433732612502773552420, 0.68472825190667696835378444408, 1.96843901793091553169532659105, 4.43142264842906032293782355629, 5.75820278745101047311481625152, 6.66850443047989650100994468659, 7.83821040539931494895413579649, 8.897062746475311864435460326129, 10.74748682522092867009367852933, 11.45558592283156759362315090631, 12.00866140649145787870082324844

Graph of the $Z$-function along the critical line