Properties

Label 2-126-7.5-c4-0-1
Degree $2$
Conductor $126$
Sign $0.266 - 0.963i$
Analytic cond. $13.0246$
Root an. cond. $3.60896$
Motivic weight $4$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1.41 − 2.44i)2-s + (−3.99 − 6.92i)4-s + (−21.9 − 12.6i)5-s + (−7 + 48.4i)7-s − 22.6·8-s + (−62.1 + 35.9i)10-s + (21.9 + 38.0i)11-s + 162. i·13-s + (108. + 85.7i)14-s + (−32.0 + 55.4i)16-s + (−93.7 + 54.1i)17-s + (389. + 224. i)19-s + 203. i·20-s + 124.·22-s + (−217. + 377. i)23-s + ⋯
L(s)  = 1  + (0.353 − 0.612i)2-s + (−0.249 − 0.433i)4-s + (−0.879 − 0.507i)5-s + (−0.142 + 0.989i)7-s − 0.353·8-s + (−0.621 + 0.359i)10-s + (0.181 + 0.314i)11-s + 0.961i·13-s + (0.555 + 0.437i)14-s + (−0.125 + 0.216i)16-s + (−0.324 + 0.187i)17-s + (1.07 + 0.622i)19-s + 0.507i·20-s + 0.256·22-s + (−0.411 + 0.713i)23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 126 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.266 - 0.963i)\, \overline{\Lambda}(5-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 126 ^{s/2} \, \Gamma_{\C}(s+2) \, L(s)\cr =\mathstrut & (0.266 - 0.963i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(126\)    =    \(2 \cdot 3^{2} \cdot 7\)
Sign: $0.266 - 0.963i$
Analytic conductor: \(13.0246\)
Root analytic conductor: \(3.60896\)
Motivic weight: \(4\)
Rational: no
Arithmetic: yes
Character: $\chi_{126} (19, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 126,\ (\ :2),\ 0.266 - 0.963i)\)

Particular Values

\(L(\frac{5}{2})\) \(\approx\) \(0.733135 + 0.557736i\)
\(L(\frac12)\) \(\approx\) \(0.733135 + 0.557736i\)
\(L(3)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-1.41 + 2.44i)T \)
3 \( 1 \)
7 \( 1 + (7 - 48.4i)T \)
good5 \( 1 + (21.9 + 12.6i)T + (312.5 + 541. i)T^{2} \)
11 \( 1 + (-21.9 - 38.0i)T + (-7.32e3 + 1.26e4i)T^{2} \)
13 \( 1 - 162. iT - 2.85e4T^{2} \)
17 \( 1 + (93.7 - 54.1i)T + (4.17e4 - 7.23e4i)T^{2} \)
19 \( 1 + (-389. - 224. i)T + (6.51e4 + 1.12e5i)T^{2} \)
23 \( 1 + (217. - 377. i)T + (-1.39e5 - 2.42e5i)T^{2} \)
29 \( 1 + 742.T + 7.07e5T^{2} \)
31 \( 1 + (900. - 519. i)T + (4.61e5 - 7.99e5i)T^{2} \)
37 \( 1 + (493. - 854. i)T + (-9.37e5 - 1.62e6i)T^{2} \)
41 \( 1 - 1.14e3iT - 2.82e6T^{2} \)
43 \( 1 - 2.41e3T + 3.41e6T^{2} \)
47 \( 1 + (-1.16e3 - 672. i)T + (2.43e6 + 4.22e6i)T^{2} \)
53 \( 1 + (1.78e3 + 3.08e3i)T + (-3.94e6 + 6.83e6i)T^{2} \)
59 \( 1 + (3.71e3 - 2.14e3i)T + (6.05e6 - 1.04e7i)T^{2} \)
61 \( 1 + (1.20e3 + 698. i)T + (6.92e6 + 1.19e7i)T^{2} \)
67 \( 1 + (3.63e3 + 6.29e3i)T + (-1.00e7 + 1.74e7i)T^{2} \)
71 \( 1 + 5.98e3T + 2.54e7T^{2} \)
73 \( 1 + (500. - 288. i)T + (1.41e7 - 2.45e7i)T^{2} \)
79 \( 1 + (-1.57e3 + 2.72e3i)T + (-1.94e7 - 3.37e7i)T^{2} \)
83 \( 1 - 4.72e3iT - 4.74e7T^{2} \)
89 \( 1 + (-725. - 418. i)T + (3.13e7 + 5.43e7i)T^{2} \)
97 \( 1 - 5.62e3iT - 8.85e7T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.52233961533074369907794556169, −11.97412067553098577226125213916, −11.19869409529417231238185104765, −9.646941756340093542635970844631, −8.866249361561167734611652187958, −7.56965561997432072848876709785, −5.96161419763693693373347792133, −4.68676026331060835200944169048, −3.48126444802993689901658523548, −1.74031593869251843742930281111, 0.34575469021196868838455809089, 3.21058222920407238829783308329, 4.23510753861796667746183380517, 5.76675728676495871922716618321, 7.23627544153522515157731880722, 7.65370036214452377938444927827, 9.120028910386365072368919457758, 10.56641019346932968950549307431, 11.39863639129638616295135542039, 12.62928920669691867551238257628

Graph of the $Z$-function along the critical line