Properties

Label 126.5.n.a.19.2
Level $126$
Weight $5$
Character 126.19
Analytic conductor $13.025$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [126,5,Mod(19,126)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(126, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 5])) N = Newforms(chi, 5, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("126.19"); S:= CuspForms(chi, 5); N := Newforms(S);
 
Level: \( N \) \(=\) \( 126 = 2 \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 126.n (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,-16,-54] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.0246153486\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\sqrt{2}, \sqrt{-3})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 14)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 19.2
Root \(0.707107 - 1.22474i\) of defining polynomial
Character \(\chi\) \(=\) 126.19
Dual form 126.5.n.a.73.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.41421 - 2.44949i) q^{2} +(-4.00000 - 6.92820i) q^{4} +(-21.9853 - 12.6932i) q^{5} +(-7.00000 + 48.4974i) q^{7} -22.6274 q^{8} +(-62.1838 + 35.9018i) q^{10} +(21.9853 + 38.0796i) q^{11} +162.507i q^{13} +(108.894 + 85.7321i) q^{14} +(-32.0000 + 55.4256i) q^{16} +(-93.7355 + 54.1182i) q^{17} +(389.338 + 224.784i) q^{19} +203.091i q^{20} +124.368 q^{22} +(-217.911 + 377.433i) q^{23} +(9.73506 + 16.8616i) q^{25} +(398.059 + 229.819i) q^{26} +(364.000 - 145.492i) q^{28} -742.118 q^{29} +(-900.175 + 519.716i) q^{31} +(90.5097 + 156.767i) q^{32} +306.139i q^{34} +(769.485 - 977.377i) q^{35} +(-493.338 + 854.486i) q^{37} +(1101.21 - 635.786i) q^{38} +(497.470 + 287.215i) q^{40} +1143.70i q^{41} +2418.82 q^{43} +(175.882 - 304.637i) q^{44} +(616.346 + 1067.54i) q^{46} +(1165.17 + 672.714i) q^{47} +(-2303.00 - 678.964i) q^{49} +55.0698 q^{50} +(1125.88 - 650.027i) q^{52} +(-1783.10 - 3088.42i) q^{53} -1116.26i q^{55} +(158.392 - 1097.37i) q^{56} +(-1049.51 + 1817.81i) q^{58} +(-3710.93 + 2142.50i) q^{59} +(-1209.57 - 698.345i) q^{61} +2939.96i q^{62} +512.000 q^{64} +(2062.73 - 3572.76i) q^{65} +(-3632.89 - 6292.36i) q^{67} +(749.884 + 432.946i) q^{68} +(-1305.86 - 3267.07i) q^{70} -5987.76 q^{71} +(-500.123 + 288.746i) q^{73} +(1395.37 + 2416.85i) q^{74} -3596.55i q^{76} +(-2000.66 + 799.672i) q^{77} +(1573.12 - 2724.72i) q^{79} +(1407.06 - 812.365i) q^{80} +(2801.47 + 1617.43i) q^{82} +4729.96i q^{83} +2747.74 q^{85} +(3420.73 - 5924.88i) q^{86} +(-497.470 - 861.644i) q^{88} +(725.651 + 418.955i) q^{89} +(-7881.16 - 1137.55i) q^{91} +3486.58 q^{92} +(3295.61 - 1902.72i) q^{94} +(-5706.47 - 9883.89i) q^{95} +5622.23i q^{97} +(-4920.05 + 4680.97i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 16 q^{4} - 54 q^{5} - 28 q^{7} - 96 q^{10} + 54 q^{11} - 128 q^{16} - 918 q^{17} + 30 q^{19} + 192 q^{22} + 486 q^{23} - 572 q^{25} + 1728 q^{26} + 1456 q^{28} - 3240 q^{29} - 546 q^{31} + 1890 q^{35}+ \cdots - 8910 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/126\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(73\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.41421 2.44949i 0.353553 0.612372i
\(3\) 0 0
\(4\) −4.00000 6.92820i −0.250000 0.433013i
\(5\) −21.9853 12.6932i −0.879411 0.507728i −0.00894701 0.999960i \(-0.502848\pi\)
−0.870464 + 0.492232i \(0.836181\pi\)
\(6\) 0 0
\(7\) −7.00000 + 48.4974i −0.142857 + 0.989743i
\(8\) −22.6274 −0.353553
\(9\) 0 0
\(10\) −62.1838 + 35.9018i −0.621838 + 0.359018i
\(11\) 21.9853 + 38.0796i 0.181697 + 0.314708i 0.942458 0.334324i \(-0.108508\pi\)
−0.760762 + 0.649031i \(0.775174\pi\)
\(12\) 0 0
\(13\) 162.507i 0.961579i 0.876836 + 0.480790i \(0.159650\pi\)
−0.876836 + 0.480790i \(0.840350\pi\)
\(14\) 108.894 + 85.7321i 0.555584 + 0.437409i
\(15\) 0 0
\(16\) −32.0000 + 55.4256i −0.125000 + 0.216506i
\(17\) −93.7355 + 54.1182i −0.324344 + 0.187260i −0.653327 0.757076i \(-0.726627\pi\)
0.328983 + 0.944336i \(0.393294\pi\)
\(18\) 0 0
\(19\) 389.338 + 224.784i 1.07850 + 0.622671i 0.930491 0.366315i \(-0.119381\pi\)
0.148007 + 0.988986i \(0.452714\pi\)
\(20\) 203.091i 0.507728i
\(21\) 0 0
\(22\) 124.368 0.256958
\(23\) −217.911 + 377.433i −0.411931 + 0.713485i −0.995101 0.0988653i \(-0.968479\pi\)
0.583170 + 0.812350i \(0.301812\pi\)
\(24\) 0 0
\(25\) 9.73506 + 16.8616i 0.0155761 + 0.0269786i
\(26\) 398.059 + 229.819i 0.588844 + 0.339970i
\(27\) 0 0
\(28\) 364.000 145.492i 0.464286 0.185577i
\(29\) −742.118 −0.882423 −0.441212 0.897403i \(-0.645451\pi\)
−0.441212 + 0.897403i \(0.645451\pi\)
\(30\) 0 0
\(31\) −900.175 + 519.716i −0.936707 + 0.540808i −0.888926 0.458050i \(-0.848548\pi\)
−0.0477804 + 0.998858i \(0.515215\pi\)
\(32\) 90.5097 + 156.767i 0.0883883 + 0.153093i
\(33\) 0 0
\(34\) 306.139i 0.264826i
\(35\) 769.485 977.377i 0.628151 0.797859i
\(36\) 0 0
\(37\) −493.338 + 854.486i −0.360364 + 0.624168i −0.988021 0.154322i \(-0.950681\pi\)
0.627657 + 0.778490i \(0.284014\pi\)
\(38\) 1101.21 635.786i 0.762613 0.440295i
\(39\) 0 0
\(40\) 497.470 + 287.215i 0.310919 + 0.179509i
\(41\) 1143.70i 0.680366i 0.940359 + 0.340183i \(0.110489\pi\)
−0.940359 + 0.340183i \(0.889511\pi\)
\(42\) 0 0
\(43\) 2418.82 1.30818 0.654089 0.756418i \(-0.273052\pi\)
0.654089 + 0.756418i \(0.273052\pi\)
\(44\) 175.882 304.637i 0.0908483 0.157354i
\(45\) 0 0
\(46\) 616.346 + 1067.54i 0.291279 + 0.504510i
\(47\) 1165.17 + 672.714i 0.527467 + 0.304533i 0.739984 0.672624i \(-0.234833\pi\)
−0.212517 + 0.977157i \(0.568166\pi\)
\(48\) 0 0
\(49\) −2303.00 678.964i −0.959184 0.282784i
\(50\) 55.0698 0.0220279
\(51\) 0 0
\(52\) 1125.88 650.027i 0.416376 0.240395i
\(53\) −1783.10 3088.42i −0.634782 1.09947i −0.986561 0.163391i \(-0.947757\pi\)
0.351780 0.936083i \(-0.385577\pi\)
\(54\) 0 0
\(55\) 1116.26i 0.369010i
\(56\) 158.392 1097.37i 0.0505076 0.349927i
\(57\) 0 0
\(58\) −1049.51 + 1817.81i −0.311984 + 0.540372i
\(59\) −3710.93 + 2142.50i −1.06605 + 0.615485i −0.927100 0.374814i \(-0.877707\pi\)
−0.138952 + 0.990299i \(0.544373\pi\)
\(60\) 0 0
\(61\) −1209.57 698.345i −0.325066 0.187677i 0.328583 0.944475i \(-0.393429\pi\)
−0.653648 + 0.756799i \(0.726762\pi\)
\(62\) 2939.96i 0.764818i
\(63\) 0 0
\(64\) 512.000 0.125000
\(65\) 2062.73 3572.76i 0.488221 0.845623i
\(66\) 0 0
\(67\) −3632.89 6292.36i −0.809288 1.40173i −0.913358 0.407158i \(-0.866520\pi\)
0.104070 0.994570i \(-0.466813\pi\)
\(68\) 749.884 + 432.946i 0.162172 + 0.0936301i
\(69\) 0 0
\(70\) −1305.86 3267.07i −0.266502 0.666748i
\(71\) −5987.76 −1.18781 −0.593906 0.804534i \(-0.702415\pi\)
−0.593906 + 0.804534i \(0.702415\pi\)
\(72\) 0 0
\(73\) −500.123 + 288.746i −0.0938494 + 0.0541840i −0.546190 0.837661i \(-0.683922\pi\)
0.452341 + 0.891845i \(0.350589\pi\)
\(74\) 1395.37 + 2416.85i 0.254815 + 0.441353i
\(75\) 0 0
\(76\) 3596.55i 0.622671i
\(77\) −2000.66 + 799.672i −0.337436 + 0.134875i
\(78\) 0 0
\(79\) 1573.12 2724.72i 0.252061 0.436583i −0.712032 0.702147i \(-0.752225\pi\)
0.964093 + 0.265564i \(0.0855582\pi\)
\(80\) 1407.06 812.365i 0.219853 0.126932i
\(81\) 0 0
\(82\) 2801.47 + 1617.43i 0.416637 + 0.240546i
\(83\) 4729.96i 0.686596i 0.939227 + 0.343298i \(0.111544\pi\)
−0.939227 + 0.343298i \(0.888456\pi\)
\(84\) 0 0
\(85\) 2747.74 0.380309
\(86\) 3420.73 5924.88i 0.462511 0.801092i
\(87\) 0 0
\(88\) −497.470 861.644i −0.0642394 0.111266i
\(89\) 725.651 + 418.955i 0.0916110 + 0.0528916i 0.545106 0.838367i \(-0.316490\pi\)
−0.453495 + 0.891259i \(0.649823\pi\)
\(90\) 0 0
\(91\) −7881.16 1137.55i −0.951716 0.137368i
\(92\) 3486.58 0.411931
\(93\) 0 0
\(94\) 3295.61 1902.72i 0.372975 0.215337i
\(95\) −5706.47 9883.89i −0.632295 1.09517i
\(96\) 0 0
\(97\) 5622.23i 0.597537i 0.954326 + 0.298769i \(0.0965759\pi\)
−0.954326 + 0.298769i \(0.903424\pi\)
\(98\) −4920.05 + 4680.97i −0.512292 + 0.487398i
\(99\) 0 0
\(100\) 77.8805 134.893i 0.00778805 0.0134893i
\(101\) 5703.21 3292.75i 0.559083 0.322787i −0.193694 0.981062i \(-0.562047\pi\)
0.752778 + 0.658275i \(0.228714\pi\)
\(102\) 0 0
\(103\) 1320.25 + 762.249i 0.124447 + 0.0718492i 0.560931 0.827863i \(-0.310443\pi\)
−0.436484 + 0.899712i \(0.643777\pi\)
\(104\) 3677.11i 0.339970i
\(105\) 0 0
\(106\) −10086.7 −0.897717
\(107\) 5303.31 9185.61i 0.463212 0.802306i −0.535907 0.844277i \(-0.680030\pi\)
0.999119 + 0.0419706i \(0.0133636\pi\)
\(108\) 0 0
\(109\) 6976.13 + 12083.0i 0.587167 + 1.01700i 0.994601 + 0.103769i \(0.0330902\pi\)
−0.407434 + 0.913235i \(0.633576\pi\)
\(110\) −2734.26 1578.62i −0.225972 0.130465i
\(111\) 0 0
\(112\) −2464.00 1939.90i −0.196429 0.154647i
\(113\) 8811.30 0.690054 0.345027 0.938593i \(-0.387870\pi\)
0.345027 + 0.938593i \(0.387870\pi\)
\(114\) 0 0
\(115\) 9581.68 5531.99i 0.724513 0.418298i
\(116\) 2968.47 + 5141.54i 0.220606 + 0.382100i
\(117\) 0 0
\(118\) 12119.8i 0.870427i
\(119\) −1968.45 4924.76i −0.139005 0.347769i
\(120\) 0 0
\(121\) 6353.79 11005.1i 0.433973 0.751663i
\(122\) −3421.18 + 1975.22i −0.229856 + 0.132707i
\(123\) 0 0
\(124\) 7201.40 + 4157.73i 0.468353 + 0.270404i
\(125\) 15372.2i 0.983823i
\(126\) 0 0
\(127\) 3992.70 0.247548 0.123774 0.992310i \(-0.460500\pi\)
0.123774 + 0.992310i \(0.460500\pi\)
\(128\) 724.077 1254.14i 0.0441942 0.0765466i
\(129\) 0 0
\(130\) −5834.29 10105.3i −0.345224 0.597946i
\(131\) 17515.4 + 10112.5i 1.02065 + 0.589272i 0.914292 0.405056i \(-0.132748\pi\)
0.106357 + 0.994328i \(0.466081\pi\)
\(132\) 0 0
\(133\) −13626.8 + 17308.4i −0.770355 + 0.978483i
\(134\) −20550.7 −1.14451
\(135\) 0 0
\(136\) 2120.99 1224.56i 0.114673 0.0662065i
\(137\) 12528.9 + 21700.6i 0.667530 + 1.15620i 0.978593 + 0.205807i \(0.0659818\pi\)
−0.311062 + 0.950389i \(0.600685\pi\)
\(138\) 0 0
\(139\) 20070.1i 1.03877i 0.854541 + 0.519385i \(0.173839\pi\)
−0.854541 + 0.519385i \(0.826161\pi\)
\(140\) −9849.41 1421.64i −0.502521 0.0725326i
\(141\) 0 0
\(142\) −8467.98 + 14667.0i −0.419955 + 0.727384i
\(143\) −6188.20 + 3572.76i −0.302616 + 0.174716i
\(144\) 0 0
\(145\) 16315.7 + 9419.86i 0.776013 + 0.448031i
\(146\) 1633.40i 0.0766277i
\(147\) 0 0
\(148\) 7893.40 0.360364
\(149\) −21353.9 + 36986.1i −0.961846 + 1.66597i −0.243986 + 0.969779i \(0.578455\pi\)
−0.717860 + 0.696188i \(0.754878\pi\)
\(150\) 0 0
\(151\) −14803.7 25640.8i −0.649258 1.12455i −0.983301 0.181989i \(-0.941746\pi\)
0.334043 0.942558i \(-0.391587\pi\)
\(152\) −8809.71 5086.29i −0.381307 0.220147i
\(153\) 0 0
\(154\) −870.573 + 6031.50i −0.0367082 + 0.254322i
\(155\) 26387.5 1.09833
\(156\) 0 0
\(157\) 10597.6 6118.53i 0.429940 0.248226i −0.269381 0.963034i \(-0.586819\pi\)
0.699321 + 0.714808i \(0.253486\pi\)
\(158\) −4449.44 7706.66i −0.178234 0.308711i
\(159\) 0 0
\(160\) 4595.43i 0.179509i
\(161\) −16779.2 13210.2i −0.647319 0.509632i
\(162\) 0 0
\(163\) −10765.6 + 18646.5i −0.405193 + 0.701814i −0.994344 0.106209i \(-0.966129\pi\)
0.589151 + 0.808023i \(0.299462\pi\)
\(164\) 7923.75 4574.78i 0.294607 0.170092i
\(165\) 0 0
\(166\) 11586.0 + 6689.17i 0.420452 + 0.242748i
\(167\) 16578.9i 0.594461i −0.954806 0.297230i \(-0.903937\pi\)
0.954806 0.297230i \(-0.0960629\pi\)
\(168\) 0 0
\(169\) 2152.52 0.0753658
\(170\) 3885.88 6730.55i 0.134460 0.232891i
\(171\) 0 0
\(172\) −9675.28 16758.1i −0.327044 0.566458i
\(173\) 34972.8 + 20191.5i 1.16852 + 0.674648i 0.953332 0.301924i \(-0.0976289\pi\)
0.215192 + 0.976572i \(0.430962\pi\)
\(174\) 0 0
\(175\) −885.891 + 354.094i −0.0289270 + 0.0115623i
\(176\) −2814.12 −0.0908483
\(177\) 0 0
\(178\) 2052.45 1184.98i 0.0647788 0.0374000i
\(179\) −26747.2 46327.5i −0.834780 1.44588i −0.894209 0.447649i \(-0.852261\pi\)
0.0594290 0.998233i \(-0.481072\pi\)
\(180\) 0 0
\(181\) 54202.1i 1.65447i 0.561857 + 0.827235i \(0.310087\pi\)
−0.561857 + 0.827235i \(0.689913\pi\)
\(182\) −13932.1 + 17696.1i −0.420603 + 0.534238i
\(183\) 0 0
\(184\) 4930.77 8540.34i 0.145639 0.252255i
\(185\) 21692.3 12524.1i 0.633815 0.365934i
\(186\) 0 0
\(187\) −4121.60 2379.61i −0.117864 0.0680491i
\(188\) 10763.4i 0.304533i
\(189\) 0 0
\(190\) −32280.6 −0.894201
\(191\) −601.936 + 1042.58i −0.0165000 + 0.0285788i −0.874158 0.485643i \(-0.838586\pi\)
0.857658 + 0.514221i \(0.171919\pi\)
\(192\) 0 0
\(193\) −25656.5 44438.3i −0.688783 1.19301i −0.972232 0.234019i \(-0.924812\pi\)
0.283449 0.958987i \(-0.408521\pi\)
\(194\) 13771.6 + 7951.03i 0.365915 + 0.211261i
\(195\) 0 0
\(196\) 4508.00 + 18671.5i 0.117347 + 0.486035i
\(197\) 1456.28 0.0375242 0.0187621 0.999824i \(-0.494027\pi\)
0.0187621 + 0.999824i \(0.494027\pi\)
\(198\) 0 0
\(199\) 59546.3 34379.1i 1.50366 0.868137i 0.503667 0.863898i \(-0.331984\pi\)
0.999991 0.00423890i \(-0.00134929\pi\)
\(200\) −220.279 381.535i −0.00550698 0.00953838i
\(201\) 0 0
\(202\) 18626.6i 0.456490i
\(203\) 5194.82 35990.8i 0.126060 0.873372i
\(204\) 0 0
\(205\) 14517.2 25144.5i 0.345441 0.598322i
\(206\) 3734.24 2155.96i 0.0879970 0.0508051i
\(207\) 0 0
\(208\) −9007.04 5200.22i −0.208188 0.120197i
\(209\) 19767.8i 0.452549i
\(210\) 0 0
\(211\) −622.821 −0.0139894 −0.00699469 0.999976i \(-0.502226\pi\)
−0.00699469 + 0.999976i \(0.502226\pi\)
\(212\) −14264.8 + 24707.4i −0.317391 + 0.549737i
\(213\) 0 0
\(214\) −15000.0 25980.8i −0.327540 0.567316i
\(215\) −53178.5 30702.6i −1.15043 0.664199i
\(216\) 0 0
\(217\) −18903.7 47294.2i −0.401446 1.00436i
\(218\) 39463.0 0.830380
\(219\) 0 0
\(220\) −7733.64 + 4465.02i −0.159786 + 0.0922525i
\(221\) −8794.58 15232.7i −0.180066 0.311883i
\(222\) 0 0
\(223\) 11509.7i 0.231449i 0.993281 + 0.115725i \(0.0369190\pi\)
−0.993281 + 0.115725i \(0.963081\pi\)
\(224\) −8236.38 + 3292.11i −0.164150 + 0.0656113i
\(225\) 0 0
\(226\) 12461.1 21583.2i 0.243971 0.422570i
\(227\) 48815.4 28183.6i 0.947339 0.546946i 0.0550855 0.998482i \(-0.482457\pi\)
0.892253 + 0.451535i \(0.149124\pi\)
\(228\) 0 0
\(229\) −36484.4 21064.3i −0.695722 0.401675i 0.110030 0.993928i \(-0.464905\pi\)
−0.805752 + 0.592253i \(0.798239\pi\)
\(230\) 31293.6i 0.591562i
\(231\) 0 0
\(232\) 16792.2 0.311984
\(233\) −27550.9 + 47719.6i −0.507486 + 0.878992i 0.492476 + 0.870326i \(0.336092\pi\)
−0.999962 + 0.00866633i \(0.997241\pi\)
\(234\) 0 0
\(235\) −17077.8 29579.6i −0.309240 0.535620i
\(236\) 29687.4 + 17140.0i 0.533026 + 0.307743i
\(237\) 0 0
\(238\) −14846.9 2142.97i −0.262110 0.0378323i
\(239\) −23082.5 −0.404098 −0.202049 0.979375i \(-0.564760\pi\)
−0.202049 + 0.979375i \(0.564760\pi\)
\(240\) 0 0
\(241\) 70643.9 40786.3i 1.21630 0.702231i 0.252175 0.967682i \(-0.418854\pi\)
0.964124 + 0.265451i \(0.0855209\pi\)
\(242\) −17971.2 31127.1i −0.306865 0.531506i
\(243\) 0 0
\(244\) 11173.5i 0.187677i
\(245\) 42013.9 + 44159.7i 0.699940 + 0.735688i
\(246\) 0 0
\(247\) −36529.0 + 63270.0i −0.598747 + 1.03706i
\(248\) 20368.6 11759.8i 0.331176 0.191204i
\(249\) 0 0
\(250\) 37654.1 + 21739.6i 0.602466 + 0.347834i
\(251\) 27207.6i 0.431859i 0.976409 + 0.215930i \(0.0692782\pi\)
−0.976409 + 0.215930i \(0.930722\pi\)
\(252\) 0 0
\(253\) −19163.4 −0.299385
\(254\) 5646.53 9780.08i 0.0875214 0.151592i
\(255\) 0 0
\(256\) −2048.00 3547.24i −0.0312500 0.0541266i
\(257\) −93469.3 53964.5i −1.41515 0.817038i −0.419283 0.907856i \(-0.637719\pi\)
−0.995868 + 0.0908179i \(0.971052\pi\)
\(258\) 0 0
\(259\) −37987.0 29907.0i −0.566286 0.445834i
\(260\) −33003.7 −0.488221
\(261\) 0 0
\(262\) 49540.9 28602.5i 0.721708 0.416678i
\(263\) −20072.0 34765.8i −0.290188 0.502621i 0.683666 0.729795i \(-0.260385\pi\)
−0.973854 + 0.227174i \(0.927051\pi\)
\(264\) 0 0
\(265\) 90533.1i 1.28919i
\(266\) 23125.5 + 57856.5i 0.326834 + 0.817690i
\(267\) 0 0
\(268\) −29063.1 + 50338.8i −0.404644 + 0.700864i
\(269\) −91239.0 + 52676.9i −1.26089 + 0.727973i −0.973246 0.229765i \(-0.926204\pi\)
−0.287641 + 0.957738i \(0.592871\pi\)
\(270\) 0 0
\(271\) −13189.3 7614.84i −0.179590 0.103687i 0.407510 0.913201i \(-0.366397\pi\)
−0.587100 + 0.809514i \(0.699731\pi\)
\(272\) 6927.13i 0.0936301i
\(273\) 0 0
\(274\) 70874.0 0.944030
\(275\) −428.056 + 741.415i −0.00566025 + 0.00980384i
\(276\) 0 0
\(277\) 4935.81 + 8549.07i 0.0643278 + 0.111419i 0.896396 0.443255i \(-0.146176\pi\)
−0.832068 + 0.554674i \(0.812843\pi\)
\(278\) 49161.4 + 28383.4i 0.636114 + 0.367260i
\(279\) 0 0
\(280\) −17411.5 + 22115.5i −0.222085 + 0.282086i
\(281\) 155117. 1.96448 0.982240 0.187631i \(-0.0600810\pi\)
0.982240 + 0.187631i \(0.0600810\pi\)
\(282\) 0 0
\(283\) −94970.0 + 54831.0i −1.18581 + 0.684626i −0.957351 0.288929i \(-0.906701\pi\)
−0.228456 + 0.973554i \(0.573368\pi\)
\(284\) 23951.1 + 41484.4i 0.296953 + 0.514338i
\(285\) 0 0
\(286\) 20210.6i 0.247085i
\(287\) −55466.3 8005.87i −0.673388 0.0971952i
\(288\) 0 0
\(289\) −35902.9 + 62185.7i −0.429867 + 0.744552i
\(290\) 46147.7 26643.4i 0.548724 0.316806i
\(291\) 0 0
\(292\) 4000.99 + 2309.97i 0.0469247 + 0.0270920i
\(293\) 89912.4i 1.04733i 0.851924 + 0.523666i \(0.175436\pi\)
−0.851924 + 0.523666i \(0.824564\pi\)
\(294\) 0 0
\(295\) 108781. 1.25000
\(296\) 11163.0 19334.8i 0.127408 0.220677i
\(297\) 0 0
\(298\) 60398.1 + 104613.i 0.680128 + 1.17802i
\(299\) −61335.5 35412.1i −0.686072 0.396104i
\(300\) 0 0
\(301\) −16931.7 + 117307.i −0.186883 + 1.29476i
\(302\) −83742.5 −0.918189
\(303\) 0 0
\(304\) −24917.6 + 14386.2i −0.269624 + 0.155668i
\(305\) 17728.5 + 30706.6i 0.190578 + 0.330090i
\(306\) 0 0
\(307\) 141681.i 1.50327i −0.659582 0.751633i \(-0.729267\pi\)
0.659582 0.751633i \(-0.270733\pi\)
\(308\) 13542.9 + 10662.3i 0.142762 + 0.112396i
\(309\) 0 0
\(310\) 37317.5 64635.9i 0.388320 0.672590i
\(311\) 74171.3 42822.8i 0.766858 0.442746i −0.0648948 0.997892i \(-0.520671\pi\)
0.831753 + 0.555147i \(0.187338\pi\)
\(312\) 0 0
\(313\) 15442.6 + 8915.78i 0.157627 + 0.0910061i 0.576739 0.816929i \(-0.304325\pi\)
−0.419112 + 0.907935i \(0.637658\pi\)
\(314\) 34611.6i 0.351045i
\(315\) 0 0
\(316\) −25169.8 −0.252061
\(317\) 40402.6 69979.4i 0.402060 0.696388i −0.591914 0.806001i \(-0.701628\pi\)
0.993974 + 0.109613i \(0.0349610\pi\)
\(318\) 0 0
\(319\) −16315.7 28259.6i −0.160333 0.277705i
\(320\) −11256.5 6498.92i −0.109926 0.0634660i
\(321\) 0 0
\(322\) −56087.5 + 22418.4i −0.540946 + 0.216218i
\(323\) −48659.7 −0.466406
\(324\) 0 0
\(325\) −2740.13 + 1582.01i −0.0259421 + 0.0149777i
\(326\) 30449.6 + 52740.3i 0.286514 + 0.496258i
\(327\) 0 0
\(328\) 25878.9i 0.240546i
\(329\) −40781.1 + 51799.0i −0.376762 + 0.478552i
\(330\) 0 0
\(331\) −36402.1 + 63050.3i −0.332254 + 0.575482i −0.982954 0.183854i \(-0.941143\pi\)
0.650699 + 0.759336i \(0.274476\pi\)
\(332\) 32770.1 18919.8i 0.297305 0.171649i
\(333\) 0 0
\(334\) −40609.9 23446.1i −0.364031 0.210174i
\(335\) 184452.i 1.64359i
\(336\) 0 0
\(337\) 126538. 1.11419 0.557095 0.830449i \(-0.311916\pi\)
0.557095 + 0.830449i \(0.311916\pi\)
\(338\) 3044.13 5272.58i 0.0266458 0.0461519i
\(339\) 0 0
\(340\) −10990.9 19036.9i −0.0950773 0.164679i
\(341\) −39581.2 22852.2i −0.340393 0.196526i
\(342\) 0 0
\(343\) 49049.0 106937.i 0.416910 0.908948i
\(344\) −54731.7 −0.462511
\(345\) 0 0
\(346\) 98917.9 57110.3i 0.826271 0.477048i
\(347\) −33474.6 57979.8i −0.278008 0.481524i 0.692882 0.721051i \(-0.256341\pi\)
−0.970890 + 0.239528i \(0.923007\pi\)
\(348\) 0 0
\(349\) 25527.5i 0.209583i 0.994494 + 0.104792i \(0.0334176\pi\)
−0.994494 + 0.104792i \(0.966582\pi\)
\(350\) −385.489 + 2670.75i −0.00314685 + 0.0218020i
\(351\) 0 0
\(352\) −3979.76 + 6893.15i −0.0321197 + 0.0556330i
\(353\) 48995.9 28287.8i 0.393197 0.227013i −0.290347 0.956921i \(-0.593771\pi\)
0.683545 + 0.729909i \(0.260437\pi\)
\(354\) 0 0
\(355\) 131643. + 76003.9i 1.04458 + 0.603086i
\(356\) 6703.27i 0.0528916i
\(357\) 0 0
\(358\) −151305. −1.18056
\(359\) 18902.4 32739.9i 0.146665 0.254032i −0.783328 0.621609i \(-0.786479\pi\)
0.929993 + 0.367577i \(0.119813\pi\)
\(360\) 0 0
\(361\) 35895.4 + 62172.6i 0.275438 + 0.477073i
\(362\) 132767. + 76653.3i 1.01315 + 0.584943i
\(363\) 0 0
\(364\) 23643.5 + 59152.5i 0.178447 + 0.446447i
\(365\) 14660.5 0.110043
\(366\) 0 0
\(367\) 9367.27 5408.20i 0.0695474 0.0401532i −0.464823 0.885404i \(-0.653882\pi\)
0.534370 + 0.845250i \(0.320549\pi\)
\(368\) −13946.3 24155.7i −0.102983 0.178371i
\(369\) 0 0
\(370\) 70846.9i 0.517508i
\(371\) 162262. 64856.9i 1.17888 0.471203i
\(372\) 0 0
\(373\) 15511.7 26867.0i 0.111491 0.193109i −0.804880 0.593437i \(-0.797771\pi\)
0.916372 + 0.400328i \(0.131104\pi\)
\(374\) −11657.7 + 6730.55i −0.0833428 + 0.0481180i
\(375\) 0 0
\(376\) −26364.9 15221.8i −0.186488 0.107669i
\(377\) 120599.i 0.848519i
\(378\) 0 0
\(379\) −98527.5 −0.685929 −0.342964 0.939348i \(-0.611431\pi\)
−0.342964 + 0.939348i \(0.611431\pi\)
\(380\) −45651.7 + 79071.1i −0.316148 + 0.547584i
\(381\) 0 0
\(382\) 1702.53 + 2948.87i 0.0116673 + 0.0202083i
\(383\) 4454.26 + 2571.67i 0.0303653 + 0.0175314i 0.515106 0.857127i \(-0.327753\pi\)
−0.484741 + 0.874658i \(0.661086\pi\)
\(384\) 0 0
\(385\) 54135.5 + 7813.79i 0.365225 + 0.0527157i
\(386\) −145135. −0.974086
\(387\) 0 0
\(388\) 38951.9 22488.9i 0.258741 0.149384i
\(389\) 43141.0 + 74722.4i 0.285096 + 0.493801i 0.972632 0.232349i \(-0.0746412\pi\)
−0.687537 + 0.726150i \(0.741308\pi\)
\(390\) 0 0
\(391\) 47171.9i 0.308553i
\(392\) 52110.9 + 15363.2i 0.339123 + 0.0999792i
\(393\) 0 0
\(394\) 2059.48 3567.13i 0.0132668 0.0229788i
\(395\) −69170.8 + 39935.8i −0.443331 + 0.255957i
\(396\) 0 0
\(397\) −135036. 77963.1i −0.856778 0.494661i 0.00615368 0.999981i \(-0.498041\pi\)
−0.862932 + 0.505320i \(0.831375\pi\)
\(398\) 194478.i 1.22773i
\(399\) 0 0
\(400\) −1246.09 −0.00778805
\(401\) 17307.2 29977.0i 0.107631 0.186423i −0.807179 0.590307i \(-0.799007\pi\)
0.914810 + 0.403884i \(0.132340\pi\)
\(402\) 0 0
\(403\) −84457.5 146285.i −0.520030 0.900718i
\(404\) −45625.7 26342.0i −0.279542 0.161393i
\(405\) 0 0
\(406\) −80812.5 63623.3i −0.490260 0.385980i
\(407\) −43384.7 −0.261907
\(408\) 0 0
\(409\) −271749. + 156894.i −1.62450 + 0.937907i −0.638809 + 0.769366i \(0.720572\pi\)
−0.985695 + 0.168542i \(0.946094\pi\)
\(410\) −41060.7 71119.3i −0.244264 0.423077i
\(411\) 0 0
\(412\) 12196.0i 0.0718492i
\(413\) −77929.4 194968.i −0.456879 1.14304i
\(414\) 0 0
\(415\) 60038.3 103989.i 0.348604 0.603800i
\(416\) −25475.8 + 14708.4i −0.147211 + 0.0849924i
\(417\) 0 0
\(418\) 48421.0 + 27955.9i 0.277128 + 0.160000i
\(419\) 7324.74i 0.0417219i 0.999782 + 0.0208609i \(0.00664073\pi\)
−0.999782 + 0.0208609i \(0.993359\pi\)
\(420\) 0 0
\(421\) −25178.3 −0.142057 −0.0710285 0.997474i \(-0.522628\pi\)
−0.0710285 + 0.997474i \(0.522628\pi\)
\(422\) −880.802 + 1525.59i −0.00494599 + 0.00856671i
\(423\) 0 0
\(424\) 40347.0 + 69883.0i 0.224429 + 0.388723i
\(425\) −1825.04 1053.69i −0.0101040 0.00583357i
\(426\) 0 0
\(427\) 42334.9 53772.6i 0.232190 0.294920i
\(428\) −84853.0 −0.463212
\(429\) 0 0
\(430\) −150411. + 86840.1i −0.813474 + 0.469660i
\(431\) 6913.59 + 11974.7i 0.0372176 + 0.0644629i 0.884034 0.467422i \(-0.154817\pi\)
−0.846817 + 0.531885i \(0.821484\pi\)
\(432\) 0 0
\(433\) 47438.8i 0.253022i −0.991965 0.126511i \(-0.959622\pi\)
0.991965 0.126511i \(-0.0403779\pi\)
\(434\) −142580. 20579.7i −0.756973 0.109260i
\(435\) 0 0
\(436\) 55809.1 96664.1i 0.293584 0.508502i
\(437\) −169682. + 97966.0i −0.888532 + 0.512994i
\(438\) 0 0
\(439\) 95101.7 + 54907.0i 0.493469 + 0.284904i 0.726012 0.687682i \(-0.241372\pi\)
−0.232544 + 0.972586i \(0.574705\pi\)
\(440\) 25258.0i 0.130465i
\(441\) 0 0
\(442\) −49749.7 −0.254651
\(443\) −41280.4 + 71499.7i −0.210347 + 0.364331i −0.951823 0.306648i \(-0.900793\pi\)
0.741476 + 0.670979i \(0.234126\pi\)
\(444\) 0 0
\(445\) −10635.8 18421.7i −0.0537092 0.0930270i
\(446\) 28193.0 + 16277.2i 0.141733 + 0.0818297i
\(447\) 0 0
\(448\) −3584.00 + 24830.7i −0.0178571 + 0.123718i
\(449\) 330438. 1.63907 0.819534 0.573030i \(-0.194232\pi\)
0.819534 + 0.573030i \(0.194232\pi\)
\(450\) 0 0
\(451\) −43551.5 + 25144.5i −0.214116 + 0.123620i
\(452\) −35245.2 61046.4i −0.172513 0.298802i
\(453\) 0 0
\(454\) 159430.i 0.773499i
\(455\) 158830. + 125047.i 0.767204 + 0.604017i
\(456\) 0 0
\(457\) 186644. 323276.i 0.893677 1.54789i 0.0582431 0.998302i \(-0.481450\pi\)
0.835434 0.549591i \(-0.185217\pi\)
\(458\) −103193. + 59578.7i −0.491950 + 0.284027i
\(459\) 0 0
\(460\) −76653.4 44255.9i −0.362256 0.209149i
\(461\) 20355.2i 0.0957798i 0.998853 + 0.0478899i \(0.0152497\pi\)
−0.998853 + 0.0478899i \(0.984750\pi\)
\(462\) 0 0
\(463\) −31552.7 −0.147189 −0.0735944 0.997288i \(-0.523447\pi\)
−0.0735944 + 0.997288i \(0.523447\pi\)
\(464\) 23747.8 41132.3i 0.110303 0.191050i
\(465\) 0 0
\(466\) 77925.8 + 134971.i 0.358847 + 0.621541i
\(467\) 209452. + 120927.i 0.960397 + 0.554486i 0.896295 0.443458i \(-0.146248\pi\)
0.0641019 + 0.997943i \(0.479582\pi\)
\(468\) 0 0
\(469\) 330593. 132139.i 1.50296 0.600740i
\(470\) −96606.6 −0.437332
\(471\) 0 0
\(472\) 83968.7 48479.3i 0.376906 0.217607i
\(473\) 53178.5 + 92107.8i 0.237691 + 0.411694i
\(474\) 0 0
\(475\) 8753.16i 0.0387951i
\(476\) −26245.9 + 33336.8i −0.115837 + 0.147133i
\(477\) 0 0
\(478\) −32643.5 + 56540.3i −0.142870 + 0.247458i
\(479\) −235631. + 136042.i −1.02698 + 0.592926i −0.916117 0.400910i \(-0.868694\pi\)
−0.110861 + 0.993836i \(0.535361\pi\)
\(480\) 0 0
\(481\) −138860. 80170.8i −0.600187 0.346518i
\(482\) 230722.i 0.993104i
\(483\) 0 0
\(484\) −101661. −0.433973
\(485\) 71364.1 123606.i 0.303387 0.525481i
\(486\) 0 0
\(487\) 203873. + 353119.i 0.859611 + 1.48889i 0.872300 + 0.488971i \(0.162628\pi\)
−0.0126891 + 0.999919i \(0.504039\pi\)
\(488\) 27369.4 + 15801.7i 0.114928 + 0.0663537i
\(489\) 0 0
\(490\) 167585. 40461.3i 0.697981 0.168519i
\(491\) 286772. 1.18953 0.594763 0.803901i \(-0.297246\pi\)
0.594763 + 0.803901i \(0.297246\pi\)
\(492\) 0 0
\(493\) 69562.8 40162.1i 0.286209 0.165243i
\(494\) 103320. + 178955.i 0.423378 + 0.733313i
\(495\) 0 0
\(496\) 66523.7i 0.270404i
\(497\) 41914.3 290391.i 0.169687 1.17563i
\(498\) 0 0
\(499\) −175718. + 304352.i −0.705690 + 1.22229i 0.260751 + 0.965406i \(0.416030\pi\)
−0.966442 + 0.256886i \(0.917304\pi\)
\(500\) 106502. 61488.9i 0.426008 0.245956i
\(501\) 0 0
\(502\) 66644.7 + 38477.3i 0.264459 + 0.152685i
\(503\) 116045.i 0.458660i 0.973349 + 0.229330i \(0.0736535\pi\)
−0.973349 + 0.229330i \(0.926347\pi\)
\(504\) 0 0
\(505\) −167182. −0.655552
\(506\) −27101.1 + 46940.5i −0.105849 + 0.183335i
\(507\) 0 0
\(508\) −15970.8 27662.2i −0.0618870 0.107191i
\(509\) −72030.7 41586.9i −0.278024 0.160517i 0.354505 0.935054i \(-0.384649\pi\)
−0.632528 + 0.774537i \(0.717983\pi\)
\(510\) 0 0
\(511\) −10502.6 26275.9i −0.0402212 0.100627i
\(512\) −11585.2 −0.0441942
\(513\) 0 0
\(514\) −264371. + 152635.i −1.00066 + 0.577733i
\(515\) −19350.8 33516.5i −0.0729598 0.126370i
\(516\) 0 0
\(517\) 59159.2i 0.221330i
\(518\) −126979. + 50753.9i −0.473229 + 0.189151i
\(519\) 0 0
\(520\) −46674.3 + 80842.3i −0.172612 + 0.298973i
\(521\) −174948. + 101006.i −0.644517 + 0.372112i −0.786352 0.617778i \(-0.788033\pi\)
0.141835 + 0.989890i \(0.454700\pi\)
\(522\) 0 0
\(523\) −24134.0 13933.8i −0.0882321 0.0509408i 0.455235 0.890371i \(-0.349555\pi\)
−0.543467 + 0.839431i \(0.682889\pi\)
\(524\) 161800.i 0.589272i
\(525\) 0 0
\(526\) −113545. −0.410389
\(527\) 56252.3 97431.8i 0.202544 0.350816i
\(528\) 0 0
\(529\) 44949.9 + 77855.5i 0.160626 + 0.278213i
\(530\) 221760. + 128033.i 0.789462 + 0.455796i
\(531\) 0 0
\(532\) 174423. + 25175.8i 0.616284 + 0.0889530i
\(533\) −185858. −0.654226
\(534\) 0 0
\(535\) −233190. + 134632.i −0.814707 + 0.470372i
\(536\) 82203.0 + 142380.i 0.286126 + 0.495586i
\(537\) 0 0
\(538\) 297985.i 1.02951i
\(539\) −24777.4 102625.i −0.0852861 0.353243i
\(540\) 0 0
\(541\) 18996.8 32903.4i 0.0649062 0.112421i −0.831746 0.555156i \(-0.812659\pi\)
0.896652 + 0.442735i \(0.145992\pi\)
\(542\) −37305.0 + 21538.0i −0.126990 + 0.0733175i
\(543\) 0 0
\(544\) −16967.9 9796.44i −0.0573365 0.0331032i
\(545\) 354198.i 1.19249i
\(546\) 0 0
\(547\) 360160. 1.20371 0.601854 0.798606i \(-0.294429\pi\)
0.601854 + 0.798606i \(0.294429\pi\)
\(548\) 100231. 173605.i 0.333765 0.578098i
\(549\) 0 0
\(550\) 1210.73 + 2097.04i 0.00400240 + 0.00693236i
\(551\) −288934. 166816.i −0.951691 0.549459i
\(552\) 0 0
\(553\) 121130. + 95365.1i 0.396097 + 0.311845i
\(554\) 27921.1 0.0909732
\(555\) 0 0
\(556\) 139049. 80280.2i 0.449800 0.259692i
\(557\) 155272. + 268938.i 0.500474 + 0.866847i 1.00000 0.000547960i \(0.000174421\pi\)
−0.499525 + 0.866299i \(0.666492\pi\)
\(558\) 0 0
\(559\) 393075.i 1.25792i
\(560\) 29548.2 + 73925.2i 0.0942226 + 0.235731i
\(561\) 0 0
\(562\) 219369. 379958.i 0.694548 1.20299i
\(563\) −14453.4 + 8344.68i −0.0455988 + 0.0263265i −0.522626 0.852562i \(-0.675048\pi\)
0.477027 + 0.878888i \(0.341714\pi\)
\(564\) 0 0
\(565\) −193719. 111844.i −0.606841 0.350360i
\(566\) 310171.i 0.968207i
\(567\) 0 0
\(568\) 135488. 0.419955
\(569\) −65131.1 + 112810.i −0.201170 + 0.348437i −0.948906 0.315560i \(-0.897808\pi\)
0.747736 + 0.663997i \(0.231141\pi\)
\(570\) 0 0
\(571\) 249119. + 431487.i 0.764073 + 1.32341i 0.940735 + 0.339142i \(0.110137\pi\)
−0.176662 + 0.984272i \(0.556530\pi\)
\(572\) 49505.6 + 28582.1i 0.151308 + 0.0873578i
\(573\) 0 0
\(574\) −98051.5 + 124542.i −0.297598 + 0.378000i
\(575\) −8485.52 −0.0256651
\(576\) 0 0
\(577\) −29199.1 + 16858.1i −0.0877035 + 0.0506357i −0.543210 0.839597i \(-0.682791\pi\)
0.455507 + 0.890232i \(0.349458\pi\)
\(578\) 101549. + 175888.i 0.303962 + 0.526478i
\(579\) 0 0
\(580\) 150718.i 0.448031i
\(581\) −229391. 33109.7i −0.679554 0.0980851i
\(582\) 0 0
\(583\) 78404.0 135800.i 0.230675 0.399541i
\(584\) 11316.5 6533.58i 0.0331808 0.0191569i
\(585\) 0 0
\(586\) 220240. + 127155.i 0.641357 + 0.370288i
\(587\) 356809.i 1.03552i 0.855525 + 0.517762i \(0.173235\pi\)
−0.855525 + 0.517762i \(0.826765\pi\)
\(588\) 0 0
\(589\) −467296. −1.34698
\(590\) 153840. 266458.i 0.441941 0.765464i
\(591\) 0 0
\(592\) −31573.6 54687.1i −0.0900909 0.156042i
\(593\) 28872.6 + 16669.6i 0.0821063 + 0.0474041i 0.540491 0.841350i \(-0.318238\pi\)
−0.458385 + 0.888754i \(0.651572\pi\)
\(594\) 0 0
\(595\) −19234.1 + 133258.i −0.0543299 + 0.376409i
\(596\) 341663. 0.961846
\(597\) 0 0
\(598\) −173483. + 100160.i −0.485126 + 0.280088i
\(599\) 162165. + 280878.i 0.451963 + 0.782824i 0.998508 0.0546064i \(-0.0173904\pi\)
−0.546545 + 0.837430i \(0.684057\pi\)
\(600\) 0 0
\(601\) 66322.0i 0.183615i −0.995777 0.0918076i \(-0.970736\pi\)
0.995777 0.0918076i \(-0.0292645\pi\)
\(602\) 263396. + 207371.i 0.726803 + 0.572209i
\(603\) 0 0
\(604\) −118430. + 205126.i −0.324629 + 0.562274i
\(605\) −279380. + 161300.i −0.763281 + 0.440680i
\(606\) 0 0
\(607\) −422322. 243828.i −1.14622 0.661768i −0.198253 0.980151i \(-0.563527\pi\)
−0.947962 + 0.318383i \(0.896860\pi\)
\(608\) 81380.6i 0.220147i
\(609\) 0 0
\(610\) 100287. 0.269517
\(611\) −109321. + 189349.i −0.292833 + 0.507201i
\(612\) 0 0
\(613\) 170755. + 295757.i 0.454415 + 0.787070i 0.998654 0.0518597i \(-0.0165149\pi\)
−0.544239 + 0.838930i \(0.683182\pi\)
\(614\) −347047. 200368.i −0.920558 0.531484i
\(615\) 0 0
\(616\) 45269.8 18094.5i 0.119302 0.0476854i
\(617\) −240873. −0.632728 −0.316364 0.948638i \(-0.602462\pi\)
−0.316364 + 0.948638i \(0.602462\pi\)
\(618\) 0 0
\(619\) −133658. + 77167.4i −0.348830 + 0.201397i −0.664170 0.747582i \(-0.731215\pi\)
0.315340 + 0.948979i \(0.397881\pi\)
\(620\) −105550. 182818.i −0.274584 0.475593i
\(621\) 0 0
\(622\) 242242.i 0.626137i
\(623\) −25397.8 + 32259.5i −0.0654364 + 0.0831154i
\(624\) 0 0
\(625\) 201207. 348501.i 0.515091 0.892164i
\(626\) 43678.2 25217.6i 0.111459 0.0643510i
\(627\) 0 0
\(628\) −84780.8 48948.2i −0.214970 0.124113i
\(629\) 106794.i 0.269927i
\(630\) 0 0
\(631\) 220248. 0.553164 0.276582 0.960990i \(-0.410798\pi\)
0.276582 + 0.960990i \(0.410798\pi\)
\(632\) −35595.5 + 61653.3i −0.0891172 + 0.154355i
\(633\) 0 0
\(634\) −114276. 197932.i −0.284299 0.492421i
\(635\) −87780.7 50680.2i −0.217696 0.125687i
\(636\) 0 0
\(637\) 110336. 374253.i 0.271919 0.922331i
\(638\) −92295.4 −0.226745
\(639\) 0 0
\(640\) −31838.1 + 18381.7i −0.0777297 + 0.0448773i
\(641\) −340604. 589943.i −0.828960 1.43580i −0.898855 0.438247i \(-0.855600\pi\)
0.0698947 0.997554i \(-0.477734\pi\)
\(642\) 0 0
\(643\) 572102.i 1.38373i −0.722027 0.691865i \(-0.756789\pi\)
0.722027 0.691865i \(-0.243211\pi\)
\(644\) −24406.1 + 169090.i −0.0588472 + 0.407705i
\(645\) 0 0
\(646\) −68815.2 + 119191.i −0.164899 + 0.285614i
\(647\) 525915. 303637.i 1.25634 0.725348i 0.283979 0.958830i \(-0.408345\pi\)
0.972361 + 0.233482i \(0.0750120\pi\)
\(648\) 0 0
\(649\) −163171. 94207.1i −0.387396 0.223663i
\(650\) 8949.23i 0.0211816i
\(651\) 0 0
\(652\) 172249. 0.405193
\(653\) −242335. + 419737.i −0.568316 + 0.984353i 0.428416 + 0.903581i \(0.359072\pi\)
−0.996733 + 0.0807713i \(0.974262\pi\)
\(654\) 0 0
\(655\) −256720. 444652.i −0.598380 1.03642i
\(656\) −63390.0 36598.3i −0.147304 0.0850458i
\(657\) 0 0
\(658\) 69207.8 + 173148.i 0.159847 + 0.399912i
\(659\) −329627. −0.759017 −0.379509 0.925188i \(-0.623907\pi\)
−0.379509 + 0.925188i \(0.623907\pi\)
\(660\) 0 0
\(661\) −182392. + 105304.i −0.417449 + 0.241014i −0.693985 0.719989i \(-0.744147\pi\)
0.276536 + 0.961003i \(0.410813\pi\)
\(662\) 102961. + 178333.i 0.234939 + 0.406927i
\(663\) 0 0
\(664\) 107027.i 0.242748i
\(665\) 519288. 207562.i 1.17426 0.469358i
\(666\) 0 0
\(667\) 161716. 280100.i 0.363497 0.629595i
\(668\) −114862. + 66315.7i −0.257409 + 0.148615i
\(669\) 0 0
\(670\) 451814. + 260855.i 1.00649 + 0.581098i
\(671\) 61413.2i 0.136401i
\(672\) 0 0
\(673\) 94709.8 0.209105 0.104553 0.994519i \(-0.466659\pi\)
0.104553 + 0.994519i \(0.466659\pi\)
\(674\) 178951. 309952.i 0.393926 0.682300i
\(675\) 0 0
\(676\) −8610.09 14913.1i −0.0188414 0.0326343i
\(677\) −466400. 269276.i −1.01761 0.587517i −0.104199 0.994556i \(-0.533228\pi\)
−0.913411 + 0.407039i \(0.866561\pi\)
\(678\) 0 0
\(679\) −272664. 39355.6i −0.591408 0.0853625i
\(680\) −62174.1 −0.134460
\(681\) 0 0
\(682\) −111953. + 64635.9i −0.240694 + 0.138965i
\(683\) −64535.9 111779.i −0.138344 0.239618i 0.788526 0.615001i \(-0.210845\pi\)
−0.926870 + 0.375383i \(0.877511\pi\)
\(684\) 0 0
\(685\) 636126.i 1.35570i
\(686\) −192575. 271377.i −0.409215 0.576666i
\(687\) 0 0
\(688\) −77402.3 + 134065.i −0.163522 + 0.283229i
\(689\) 501890. 289766.i 1.05723 0.610393i
\(690\) 0 0
\(691\) 113201. + 65356.6i 0.237079 + 0.136878i 0.613834 0.789435i \(-0.289627\pi\)
−0.376754 + 0.926313i \(0.622960\pi\)
\(692\) 323064.i 0.674648i
\(693\) 0 0
\(694\) −189361. −0.393162
\(695\) 254753. 441246.i 0.527413 0.913505i
\(696\) 0 0
\(697\) −61894.8 107205.i −0.127406 0.220673i
\(698\) 62529.3 + 36101.3i 0.128343 + 0.0740989i
\(699\) 0 0
\(700\) 5996.80 + 4721.26i 0.0122384 + 0.00963522i
\(701\) 182501. 0.371389 0.185694 0.982608i \(-0.440547\pi\)
0.185694 + 0.982608i \(0.440547\pi\)
\(702\) 0 0
\(703\) −384150. + 221789.i −0.777302 + 0.448776i
\(704\) 11256.5 + 19496.8i 0.0227121 + 0.0393385i
\(705\) 0 0
\(706\) 160020.i 0.321044i
\(707\) 119767. + 299640.i 0.239607 + 0.599462i
\(708\) 0 0
\(709\) −406899. + 704770.i −0.809458 + 1.40202i 0.103783 + 0.994600i \(0.466905\pi\)
−0.913240 + 0.407422i \(0.866428\pi\)
\(710\) 372342. 214972.i 0.738627 0.426446i
\(711\) 0 0
\(712\) −16419.6 9479.86i −0.0323894 0.0187000i
\(713\) 453008.i 0.891101i
\(714\) 0 0
\(715\) 181399. 0.354832
\(716\) −213978. + 370620.i −0.417390 + 0.722941i
\(717\) 0 0
\(718\) −53464.0 92602.4i −0.103708 0.179628i
\(719\) 364222. + 210283.i 0.704544 + 0.406769i 0.809038 0.587757i \(-0.199989\pi\)
−0.104494 + 0.994526i \(0.533322\pi\)
\(720\) 0 0
\(721\) −46208.9 + 58693.1i −0.0888904 + 0.112906i
\(722\) 203055. 0.389528
\(723\) 0 0
\(724\) 375523. 216808.i 0.716406 0.413617i
\(725\) −7224.56 12513.3i −0.0137447 0.0238065i
\(726\) 0 0
\(727\) 172948.i 0.327225i −0.986525 0.163613i \(-0.947685\pi\)
0.986525 0.163613i \(-0.0523147\pi\)
\(728\) 178330. + 25739.8i 0.336483 + 0.0485671i
\(729\) 0 0
\(730\) 20733.0 35910.7i 0.0389061 0.0673873i
\(731\) −226729. + 130902.i −0.424300 + 0.244970i
\(732\) 0 0
\(733\) 113936. + 65780.9i 0.212057 + 0.122431i 0.602267 0.798295i \(-0.294264\pi\)
−0.390210 + 0.920726i \(0.627598\pi\)
\(734\) 30593.4i 0.0567852i
\(735\) 0 0
\(736\) −78892.3 −0.145639
\(737\) 159740. 276678.i 0.294090 0.509378i
\(738\) 0 0
\(739\) 244884. + 424151.i 0.448406 + 0.776662i 0.998282 0.0585842i \(-0.0186586\pi\)
−0.549877 + 0.835246i \(0.685325\pi\)
\(740\) −173539. 100193.i −0.316908 0.182967i
\(741\) 0 0
\(742\) 70607.2 489181.i 0.128245 0.888509i
\(743\) −580258. −1.05110 −0.525549 0.850763i \(-0.676140\pi\)
−0.525549 + 0.850763i \(0.676140\pi\)
\(744\) 0 0
\(745\) 938945. 542100.i 1.69172 0.976713i
\(746\) −43873.7 75991.5i −0.0788364 0.136549i
\(747\) 0 0
\(748\) 38073.7i 0.0680491i
\(749\) 408355. + 321496.i 0.727904 + 0.573076i
\(750\) 0 0
\(751\) −218698. + 378797.i −0.387763 + 0.671624i −0.992148 0.125067i \(-0.960085\pi\)
0.604386 + 0.796692i \(0.293419\pi\)
\(752\) −74571.2 + 43053.7i −0.131867 + 0.0761333i
\(753\) 0 0
\(754\) −295407. 170553.i −0.519610 0.299997i
\(755\) 751627.i 1.31859i
\(756\) 0 0
\(757\) −24171.7 −0.0421809 −0.0210905 0.999778i \(-0.506714\pi\)
−0.0210905 + 0.999778i \(0.506714\pi\)
\(758\) −139339. + 241342.i −0.242512 + 0.420044i
\(759\) 0 0
\(760\) 129123. + 223647.i 0.223550 + 0.387200i
\(761\) 561376. + 324111.i 0.969359 + 0.559659i 0.899041 0.437865i \(-0.144265\pi\)
0.0703180 + 0.997525i \(0.477599\pi\)
\(762\) 0 0
\(763\) −634828. + 253743.i −1.09045 + 0.435859i
\(764\) 9630.98 0.0165000
\(765\) 0 0
\(766\) 12598.5 7273.77i 0.0214715 0.0123966i
\(767\) −348172. 603051.i −0.591838 1.02509i
\(768\) 0 0
\(769\) 179564.i 0.303646i 0.988408 + 0.151823i \(0.0485143\pi\)
−0.988408 + 0.151823i \(0.951486\pi\)
\(770\) 95698.9 121554.i 0.161408 0.205016i
\(771\) 0 0
\(772\) −205252. + 355506.i −0.344391 + 0.596503i
\(773\) −529068. + 305457.i −0.885426 + 0.511201i −0.872444 0.488715i \(-0.837466\pi\)
−0.0129823 + 0.999916i \(0.504133\pi\)
\(774\) 0 0
\(775\) −17526.5 10118.9i −0.0291805 0.0168474i
\(776\) 127216.i 0.211261i
\(777\) 0 0
\(778\) 244042. 0.403186
\(779\) −257085. + 445284.i −0.423644 + 0.733773i
\(780\) 0 0
\(781\) −131643. 228012.i −0.215821 0.373814i
\(782\) −115547. 66711.1i −0.188949 0.109090i
\(783\) 0 0
\(784\) 111328. 105918.i 0.181122 0.172321i
\(785\) −310655. −0.504126
\(786\) 0 0
\(787\) 1.03191e6 595774.i 1.66607 0.961905i 0.696342 0.717710i \(-0.254810\pi\)
0.969726 0.244195i \(-0.0785236\pi\)
\(788\) −5825.10 10089.4i −0.00938104 0.0162484i
\(789\) 0 0
\(790\) 225911.i 0.361979i
\(791\) −61679.1 + 427325.i −0.0985791 + 0.682976i
\(792\) 0 0
\(793\) 113486. 196563.i 0.180466 0.312576i
\(794\) −381939. + 220513.i −0.605834 + 0.349778i
\(795\) 0 0
\(796\) −476371. 275033.i −0.751829 0.434069i
\(797\) 900495.i 1.41764i −0.705392 0.708818i \(-0.749229\pi\)
0.705392 0.708818i \(-0.250771\pi\)
\(798\) 0 0
\(799\) −145624. −0.228108
\(800\) −1762.23 + 3052.28i −0.00275349 + 0.00476919i
\(801\) 0 0
\(802\) −48952.2 84787.8i −0.0761069 0.131821i
\(803\) −21990.7 12696.3i −0.0341042 0.0196901i
\(804\) 0 0
\(805\) 201215. + 503411.i 0.310505 + 0.776838i
\(806\) −477764. −0.735433
\(807\) 0 0
\(808\) −129049. + 74506.4i −0.197666 + 0.114122i
\(809\) 277882. + 481306.i 0.424584 + 0.735401i 0.996381 0.0849939i \(-0.0270871\pi\)
−0.571798 + 0.820395i \(0.693754\pi\)
\(810\) 0 0
\(811\) 70954.2i 0.107879i −0.998544 0.0539395i \(-0.982822\pi\)
0.998544 0.0539395i \(-0.0171778\pi\)
\(812\) −270131. + 107972.i −0.409696 + 0.163757i
\(813\) 0 0
\(814\) −61355.2 + 106270.i −0.0925982 + 0.160385i
\(815\) 473368. 273299.i 0.712662 0.411455i
\(816\) 0 0
\(817\) 941738. + 543713.i 1.41087 + 0.814564i
\(818\) 887527.i 1.32640i
\(819\) 0 0
\(820\) −232275. −0.345441
\(821\) −312356. + 541016.i −0.463408 + 0.802646i −0.999128 0.0417495i \(-0.986707\pi\)
0.535720 + 0.844396i \(0.320040\pi\)
\(822\) 0 0
\(823\) 105029. + 181916.i 0.155064 + 0.268579i 0.933082 0.359663i \(-0.117108\pi\)
−0.778018 + 0.628242i \(0.783775\pi\)
\(824\) −29873.9 17247.7i −0.0439985 0.0254025i
\(825\) 0 0
\(826\) −587781. 84838.8i −0.861500 0.124347i
\(827\) 880910. 1.28801 0.644007 0.765020i \(-0.277271\pi\)
0.644007 + 0.765020i \(0.277271\pi\)
\(828\) 0 0
\(829\) −1.11951e6 + 646349.i −1.62899 + 0.940498i −0.644595 + 0.764524i \(0.722974\pi\)
−0.984395 + 0.175974i \(0.943692\pi\)
\(830\) −169814. 294127.i −0.246500 0.426951i
\(831\) 0 0
\(832\) 83203.5i 0.120197i
\(833\) 252617. 60991.2i 0.364060 0.0878977i
\(834\) 0 0
\(835\) −210440. + 364492.i −0.301825 + 0.522775i
\(836\) 136955. 79071.1i 0.195959 0.113137i
\(837\) 0 0
\(838\) 17941.9 + 10358.7i 0.0255493 + 0.0147509i
\(839\) 1.11586e6i 1.58520i 0.609741 + 0.792601i \(0.291274\pi\)
−0.609741 + 0.792601i \(0.708726\pi\)
\(840\) 0 0
\(841\) −156542. −0.221330
\(842\) −35607.5 + 61674.1i −0.0502247 + 0.0869918i
\(843\) 0 0
\(844\) 2491.28 + 4315.03i 0.00349734 + 0.00605758i
\(845\) −47323.8 27322.4i −0.0662775 0.0382653i
\(846\) 0 0
\(847\) 489242. + 385178.i 0.681957 + 0.536902i
\(848\) 228237. 0.317391
\(849\) 0 0
\(850\) −5162.00 + 2980.28i −0.00714464 + 0.00412496i
\(851\) −215008. 372404.i −0.296889 0.514228i
\(852\) 0 0
\(853\) 1.28959e6i 1.77236i 0.463341 + 0.886180i \(0.346650\pi\)
−0.463341 + 0.886180i \(0.653350\pi\)
\(854\) −71844.7 179745.i −0.0985097 0.246457i
\(855\) 0 0
\(856\) −120000. + 207847.i −0.163770 + 0.283658i
\(857\) 566854. 327273.i 0.771809 0.445604i −0.0617109 0.998094i \(-0.519656\pi\)
0.833519 + 0.552490i \(0.186322\pi\)
\(858\) 0 0
\(859\) 211796. + 122281.i 0.287033 + 0.165718i 0.636603 0.771192i \(-0.280339\pi\)
−0.349570 + 0.936910i \(0.613672\pi\)
\(860\) 491242.i 0.664199i
\(861\) 0 0
\(862\) 39109.2 0.0526337
\(863\) −232638. + 402942.i −0.312363 + 0.541029i −0.978873 0.204467i \(-0.934454\pi\)
0.666510 + 0.745496i \(0.267787\pi\)
\(864\) 0 0
\(865\) −512591. 887833.i −0.685075 1.18659i
\(866\) −116201. 67088.6i −0.154944 0.0894567i
\(867\) 0 0
\(868\) −252049. + 320145.i −0.334538 + 0.424921i
\(869\) 138342. 0.183195
\(870\) 0 0
\(871\) 1.02255e6 590370.i 1.34787 0.778194i
\(872\) −157852. 273407.i −0.207595 0.359565i
\(873\) 0 0
\(874\) 554179.i 0.725484i
\(875\) −745514. 107606.i −0.973732 0.140546i
\(876\) 0 0
\(877\) −152086. + 263420.i −0.197738 + 0.342492i −0.947795 0.318882i \(-0.896693\pi\)
0.750057 + 0.661373i \(0.230026\pi\)
\(878\) 268988. 155301.i 0.348935 0.201458i
\(879\) 0 0
\(880\) 61869.1 + 35720.2i 0.0798930 + 0.0461262i
\(881\) 697876.i 0.899138i −0.893246 0.449569i \(-0.851578\pi\)
0.893246 0.449569i \(-0.148422\pi\)
\(882\) 0 0
\(883\) 891773. 1.14375 0.571877 0.820339i \(-0.306215\pi\)
0.571877 + 0.820339i \(0.306215\pi\)
\(884\) −70356.6 + 121861.i −0.0900328 + 0.155941i
\(885\) 0 0
\(886\) 116758. + 202232.i 0.148738 + 0.257621i
\(887\) 1.09340e6 + 631278.i 1.38974 + 0.802367i 0.993286 0.115687i \(-0.0369070\pi\)
0.396455 + 0.918054i \(0.370240\pi\)
\(888\) 0 0
\(889\) −27948.9 + 193636.i −0.0353640 + 0.245009i
\(890\) −60164.9 −0.0759562
\(891\) 0 0
\(892\) 79741.8 46039.0i 0.100220 0.0578623i
\(893\) 302431. + 523826.i 0.379248 + 0.656877i
\(894\) 0 0
\(895\) 1.35803e6i 1.69537i
\(896\) 55754.0 + 43894.9i 0.0694480 + 0.0546761i
\(897\) 0 0
\(898\) 467310. 809404.i 0.579498 1.00372i
\(899\) 668036. 385691.i 0.826572 0.477221i
\(900\) 0 0
\(901\) 334280. + 192997.i 0.411776 + 0.237739i
\(902\) 142239.i 0.174825i
\(903\) 0 0
\(904\) −199377. −0.243971
\(905\) 687998. 1.19165e6i 0.840021 1.45496i
\(906\) 0 0
\(907\) −475990. 824439.i −0.578607 1.00218i −0.995639 0.0932848i \(-0.970263\pi\)
0.417033 0.908891i \(-0.363070\pi\)
\(908\) −390523. 225469.i −0.473669 0.273473i
\(909\) 0 0
\(910\) 530920. 212211.i 0.641131 0.256263i
\(911\) 743243. 0.895559 0.447779 0.894144i \(-0.352215\pi\)
0.447779 + 0.894144i \(0.352215\pi\)
\(912\) 0 0
\(913\) −180115. + 103989.i −0.216077 + 0.124752i
\(914\) −527908. 914363.i −0.631925 1.09453i
\(915\) 0 0
\(916\) 337028.i 0.401675i
\(917\) −613038. + 778662.i −0.729035 + 0.925999i
\(918\) 0 0
\(919\) 262150. 454057.i 0.310398 0.537625i −0.668050 0.744116i \(-0.732871\pi\)
0.978449 + 0.206491i \(0.0662043\pi\)
\(920\) −216809. + 125175.i −0.256154 + 0.147891i
\(921\) 0 0
\(922\) 49859.9 + 28786.6i 0.0586529 + 0.0338633i
\(923\) 973052.i 1.14218i
\(924\) 0 0
\(925\) −19210.7 −0.0224522
\(926\) −44622.3 + 77288.1i −0.0520391 + 0.0901344i
\(927\) 0 0
\(928\) −67168.8 116340.i −0.0779959 0.135093i
\(929\) −848178. 489696.i −0.982779 0.567408i −0.0796709 0.996821i \(-0.525387\pi\)
−0.903108 + 0.429414i \(0.858720\pi\)
\(930\) 0 0
\(931\) −744024. 782024.i −0.858396 0.902237i
\(932\) 440815. 0.507486
\(933\) 0 0
\(934\) 592420. 342034.i 0.679103 0.392081i
\(935\) 60409.7 + 104633.i 0.0691009 + 0.119686i
\(936\) 0 0
\(937\) 1.13988e6i 1.29831i −0.760656 0.649155i \(-0.775123\pi\)
0.760656 0.649155i \(-0.224877\pi\)
\(938\) 143855. 996658.i 0.163501 1.13277i
\(939\) 0 0
\(940\) −136622. + 236637.i −0.154620 + 0.267810i
\(941\) −693791. + 400561.i −0.783519 + 0.452365i −0.837676 0.546167i \(-0.816086\pi\)
0.0541569 + 0.998532i \(0.482753\pi\)
\(942\) 0 0
\(943\) −431669. 249224.i −0.485431 0.280264i
\(944\) 274240.i 0.307743i
\(945\) 0 0
\(946\) 300823. 0.336146
\(947\) 340143. 589145.i 0.379282 0.656935i −0.611676 0.791108i \(-0.709504\pi\)
0.990958 + 0.134173i \(0.0428378\pi\)
\(948\) 0 0
\(949\) −46923.3 81273.5i −0.0521022 0.0902436i
\(950\) 21440.8 + 12378.8i 0.0237571 + 0.0137162i
\(951\) 0 0
\(952\) 44540.8 + 111435.i 0.0491456 + 0.122955i
\(953\) 394774. 0.434673 0.217337 0.976097i \(-0.430263\pi\)
0.217337 + 0.976097i \(0.430263\pi\)
\(954\) 0 0
\(955\) 26467.5 15281.0i 0.0290206 0.0167550i
\(956\) 92329.9 + 159920.i 0.101024 + 0.174979i
\(957\) 0 0
\(958\) 769567.i 0.838524i
\(959\) −1.14013e6 + 455714.i −1.23970 + 0.495513i
\(960\) 0 0
\(961\) 78449.9 135879.i 0.0849465 0.147132i
\(962\) −392755. + 226757.i −0.424396 + 0.245025i
\(963\) 0 0
\(964\) −565151. 326290.i −0.608150 0.351115i
\(965\) 1.30265e6i 1.39886i
\(966\) 0 0
\(967\) −604328. −0.646279 −0.323140 0.946351i \(-0.604738\pi\)
−0.323140 + 0.946351i \(0.604738\pi\)
\(968\) −143770. + 249017.i −0.153433 + 0.265753i
\(969\) 0 0
\(970\) −201848. 349611.i −0.214527 0.371571i
\(971\) −657301. 379493.i −0.697149 0.402499i 0.109136 0.994027i \(-0.465192\pi\)
−0.806285 + 0.591528i \(0.798525\pi\)
\(972\) 0 0
\(973\) −973346. 140490.i −1.02811 0.148396i
\(974\) 1.15328e6 1.21567
\(975\) 0 0
\(976\) 77412.4 44694.1i 0.0812664 0.0469192i
\(977\) 612591. + 1.06104e6i 0.641773 + 1.11158i 0.985037 + 0.172345i \(0.0551344\pi\)
−0.343263 + 0.939239i \(0.611532\pi\)
\(978\) 0 0
\(979\) 36843.3i 0.0384409i
\(980\) 137892. 467719.i 0.143577 0.487005i
\(981\) 0 0
\(982\) 405557. 702446.i 0.420561 0.728434i
\(983\) 1.03964e6 600236.i 1.07591 0.621177i 0.146120 0.989267i \(-0.453322\pi\)
0.929790 + 0.368090i \(0.119988\pi\)
\(984\) 0 0
\(985\) −32016.6 18484.8i −0.0329992 0.0190521i
\(986\) 227191.i 0.233689i
\(987\) 0 0
\(988\) 584464. 0.598747
\(989\) −527088. + 912944.i −0.538878 + 0.933365i
\(990\) 0 0
\(991\) −904963. 1.56744e6i −0.921475 1.59604i −0.797134 0.603802i \(-0.793652\pi\)
−0.124340 0.992240i \(-0.539682\pi\)
\(992\) −162949. 94078.7i −0.165588 0.0956022i
\(993\) 0 0
\(994\) −652034. 513344.i −0.659929 0.519560i
\(995\) −1.74552e6 −1.76311
\(996\) 0 0
\(997\) 648903. 374644.i 0.652814 0.376902i −0.136719 0.990610i \(-0.543656\pi\)
0.789534 + 0.613707i \(0.210323\pi\)
\(998\) 497004. + 860837.i 0.498998 + 0.864291i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 126.5.n.a.19.2 4
3.2 odd 2 14.5.d.a.5.1 yes 4
7.2 even 3 882.5.c.b.685.2 4
7.3 odd 6 inner 126.5.n.a.73.2 4
7.5 odd 6 882.5.c.b.685.1 4
12.11 even 2 112.5.s.b.33.2 4
15.2 even 4 350.5.i.a.299.2 8
15.8 even 4 350.5.i.a.299.3 8
15.14 odd 2 350.5.k.a.201.2 4
21.2 odd 6 98.5.b.b.97.3 4
21.5 even 6 98.5.b.b.97.4 4
21.11 odd 6 98.5.d.a.31.1 4
21.17 even 6 14.5.d.a.3.1 4
21.20 even 2 98.5.d.a.19.1 4
84.23 even 6 784.5.c.b.97.4 4
84.47 odd 6 784.5.c.b.97.1 4
84.59 odd 6 112.5.s.b.17.2 4
105.17 odd 12 350.5.i.a.199.3 8
105.38 odd 12 350.5.i.a.199.2 8
105.59 even 6 350.5.k.a.101.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
14.5.d.a.3.1 4 21.17 even 6
14.5.d.a.5.1 yes 4 3.2 odd 2
98.5.b.b.97.3 4 21.2 odd 6
98.5.b.b.97.4 4 21.5 even 6
98.5.d.a.19.1 4 21.20 even 2
98.5.d.a.31.1 4 21.11 odd 6
112.5.s.b.17.2 4 84.59 odd 6
112.5.s.b.33.2 4 12.11 even 2
126.5.n.a.19.2 4 1.1 even 1 trivial
126.5.n.a.73.2 4 7.3 odd 6 inner
350.5.i.a.199.2 8 105.38 odd 12
350.5.i.a.199.3 8 105.17 odd 12
350.5.i.a.299.2 8 15.2 even 4
350.5.i.a.299.3 8 15.8 even 4
350.5.k.a.101.2 4 105.59 even 6
350.5.k.a.201.2 4 15.14 odd 2
784.5.c.b.97.1 4 84.47 odd 6
784.5.c.b.97.4 4 84.23 even 6
882.5.c.b.685.1 4 7.5 odd 6
882.5.c.b.685.2 4 7.2 even 3