| L(s) = 1 | − 2·2-s + 2·3-s + 4-s − 4·6-s − 9-s + 4·11-s + 2·12-s − 4·13-s + 16-s + 4·17-s + 2·18-s − 8·22-s + 2·23-s + 8·26-s − 6·27-s − 2·29-s + 12·31-s + 2·32-s + 8·33-s − 8·34-s − 36-s − 8·39-s + 10·41-s − 10·43-s + 4·44-s − 4·46-s + 4·47-s + ⋯ |
| L(s) = 1 | − 1.41·2-s + 1.15·3-s + 1/2·4-s − 1.63·6-s − 1/3·9-s + 1.20·11-s + 0.577·12-s − 1.10·13-s + 1/4·16-s + 0.970·17-s + 0.471·18-s − 1.70·22-s + 0.417·23-s + 1.56·26-s − 1.15·27-s − 0.371·29-s + 2.15·31-s + 0.353·32-s + 1.39·33-s − 1.37·34-s − 1/6·36-s − 1.28·39-s + 1.56·41-s − 1.52·43-s + 0.603·44-s − 0.589·46-s + 0.583·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1500625 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1500625 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(1.188988593\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.188988593\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.628625591722932264566027211127, −9.508420106994809935996078002804, −9.016919897597909231891323707289, −8.808610552199473868203134978649, −8.444495872034550160721314262673, −8.037906353781384409827694633443, −7.67576225175517971002514757039, −7.41456512257279403945557670395, −6.65466735339203379272403347950, −6.45648019926991244213253100313, −5.80415496924993768819501760621, −5.34011782243269297055595264148, −4.73552471897859809854297264236, −4.20784196868123022900594135744, −3.66424507225266072392019886067, −3.04346893394253018814076900055, −2.71726020941408614209350142015, −2.14317686849412090946203805086, −1.23607802281236117297335351951, −0.61920106445643496560190634896,
0.61920106445643496560190634896, 1.23607802281236117297335351951, 2.14317686849412090946203805086, 2.71726020941408614209350142015, 3.04346893394253018814076900055, 3.66424507225266072392019886067, 4.20784196868123022900594135744, 4.73552471897859809854297264236, 5.34011782243269297055595264148, 5.80415496924993768819501760621, 6.45648019926991244213253100313, 6.65466735339203379272403347950, 7.41456512257279403945557670395, 7.67576225175517971002514757039, 8.037906353781384409827694633443, 8.444495872034550160721314262673, 8.808610552199473868203134978649, 9.016919897597909231891323707289, 9.508420106994809935996078002804, 9.628625591722932264566027211127