L(s) = 1 | + 2-s + 1.56i·3-s + 4-s + i·5-s + 1.56i·6-s + i·7-s + 8-s + 0.561·9-s + i·10-s − 2i·11-s + 1.56i·12-s + 2.43·13-s + i·14-s − 1.56·15-s + 16-s + 4.12i·17-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 0.901i·3-s + 0.5·4-s + 0.447i·5-s + 0.637i·6-s + 0.377i·7-s + 0.353·8-s + 0.187·9-s + 0.316i·10-s − 0.603i·11-s + 0.450i·12-s + 0.676·13-s + 0.267i·14-s − 0.403·15-s + 0.250·16-s + 0.999i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1190 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -i\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1190 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -i\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.683098348\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.683098348\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - T \) |
| 5 | \( 1 - iT \) |
| 7 | \( 1 - iT \) |
| 17 | \( 1 - 4.12iT \) |
good | 3 | \( 1 - 1.56iT - 3T^{2} \) |
| 11 | \( 1 + 2iT - 11T^{2} \) |
| 13 | \( 1 - 2.43T + 13T^{2} \) |
| 19 | \( 1 - 1.56T + 19T^{2} \) |
| 23 | \( 1 - 7.12iT - 23T^{2} \) |
| 29 | \( 1 + 6.43iT - 29T^{2} \) |
| 31 | \( 1 + 1.56iT - 31T^{2} \) |
| 37 | \( 1 + 2iT - 37T^{2} \) |
| 41 | \( 1 - 2.87iT - 41T^{2} \) |
| 43 | \( 1 + 6.24T + 43T^{2} \) |
| 47 | \( 1 + 0.438T + 47T^{2} \) |
| 53 | \( 1 + 10.6T + 53T^{2} \) |
| 59 | \( 1 + 2.43T + 59T^{2} \) |
| 61 | \( 1 - 6.68iT - 61T^{2} \) |
| 67 | \( 1 - 7.12T + 67T^{2} \) |
| 71 | \( 1 + 0.438iT - 71T^{2} \) |
| 73 | \( 1 + 9.80iT - 73T^{2} \) |
| 79 | \( 1 + 7.36iT - 79T^{2} \) |
| 83 | \( 1 - 4.24T + 83T^{2} \) |
| 89 | \( 1 - 12.4T + 89T^{2} \) |
| 97 | \( 1 + 2.68iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.01547203352004662924182551308, −9.357770080314364476386100415360, −8.304792724992196828723120445085, −7.46308055703956870485395691157, −6.29162296578601604915594667705, −5.74408023074737815990872906790, −4.73327024028700575291526488980, −3.75545479470995677164604421039, −3.22208925960849048035234144940, −1.72498835150788332891551979540,
0.993738097288097621508231177617, 2.08025894777975806749967251769, 3.33607653824191587358184691724, 4.49589534422908332852091281908, 5.14877067464327133446570787917, 6.42174824727889133241535113633, 6.90328403745287813033123980761, 7.71073991764904887577067147325, 8.545447126589585111640655644513, 9.600077614943311537745402126487