Properties

Label 2-1190-17.16-c1-0-31
Degree $2$
Conductor $1190$
Sign $i$
Analytic cond. $9.50219$
Root an. cond. $3.08256$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 1.56i·3-s + 4-s i·5-s − 1.56i·6-s i·7-s + 8-s + 0.561·9-s i·10-s + 2i·11-s − 1.56i·12-s + 2.43·13-s i·14-s − 1.56·15-s + 16-s − 4.12i·17-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.901i·3-s + 0.5·4-s − 0.447i·5-s − 0.637i·6-s − 0.377i·7-s + 0.353·8-s + 0.187·9-s − 0.316i·10-s + 0.603i·11-s − 0.450i·12-s + 0.676·13-s − 0.267i·14-s − 0.403·15-s + 0.250·16-s − 0.999i·17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1190 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & i\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1190 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & i\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1190\)    =    \(2 \cdot 5 \cdot 7 \cdot 17\)
Sign: $i$
Analytic conductor: \(9.50219\)
Root analytic conductor: \(3.08256\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1190} (1121, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1190,\ (\ :1/2),\ i)\)

Particular Values

\(L(1)\) \(\approx\) \(2.683098348\)
\(L(\frac12)\) \(\approx\) \(2.683098348\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
5 \( 1 + iT \)
7 \( 1 + iT \)
17 \( 1 + 4.12iT \)
good3 \( 1 + 1.56iT - 3T^{2} \)
11 \( 1 - 2iT - 11T^{2} \)
13 \( 1 - 2.43T + 13T^{2} \)
19 \( 1 - 1.56T + 19T^{2} \)
23 \( 1 + 7.12iT - 23T^{2} \)
29 \( 1 - 6.43iT - 29T^{2} \)
31 \( 1 - 1.56iT - 31T^{2} \)
37 \( 1 - 2iT - 37T^{2} \)
41 \( 1 + 2.87iT - 41T^{2} \)
43 \( 1 + 6.24T + 43T^{2} \)
47 \( 1 + 0.438T + 47T^{2} \)
53 \( 1 + 10.6T + 53T^{2} \)
59 \( 1 + 2.43T + 59T^{2} \)
61 \( 1 + 6.68iT - 61T^{2} \)
67 \( 1 - 7.12T + 67T^{2} \)
71 \( 1 - 0.438iT - 71T^{2} \)
73 \( 1 - 9.80iT - 73T^{2} \)
79 \( 1 - 7.36iT - 79T^{2} \)
83 \( 1 - 4.24T + 83T^{2} \)
89 \( 1 - 12.4T + 89T^{2} \)
97 \( 1 - 2.68iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.600077614943311537745402126487, −8.545447126589585111640655644513, −7.71073991764904887577067147325, −6.90328403745287813033123980761, −6.42174824727889133241535113633, −5.14877067464327133446570787917, −4.49589534422908332852091281908, −3.33607653824191587358184691724, −2.08025894777975806749967251769, −0.993738097288097621508231177617, 1.72498835150788332891551979540, 3.22208925960849048035234144940, 3.75545479470995677164604421039, 4.73327024028700575291526488980, 5.74408023074737815990872906790, 6.29162296578601604915594667705, 7.46308055703956870485395691157, 8.304792724992196828723120445085, 9.357770080314364476386100415360, 10.01547203352004662924182551308

Graph of the $Z$-function along the critical line