| L(s) = 1 | + (−0.752 − 1.19i)2-s + (−0.867 + 1.80i)4-s + (3.95 + 0.902i)5-s + (2.81 − 0.316i)8-s + (−2.34 − 1.87i)9-s + (−1.89 − 5.41i)10-s + (2.86 − 2.28i)13-s + (−2.49 − 3.12i)16-s + (−4.03 + 4.03i)17-s + (−0.475 + 4.21i)18-s + (−5.05 + 6.34i)20-s + (10.3 + 4.97i)25-s + (−4.89 − 1.71i)26-s + (−5.15 + 1.55i)29-s + (−1.86 + 5.33i)32-s + ⋯ |
| L(s) = 1 | + (−0.532 − 0.846i)2-s + (−0.433 + 0.900i)4-s + (1.76 + 0.403i)5-s + (0.993 − 0.111i)8-s + (−0.781 − 0.623i)9-s + (−0.599 − 1.71i)10-s + (0.795 − 0.634i)13-s + (−0.623 − 0.781i)16-s + (−0.979 + 0.979i)17-s + (−0.111 + 0.993i)18-s + (−1.13 + 1.41i)20-s + (2.06 + 0.994i)25-s + (−0.960 − 0.336i)26-s + (−0.957 + 0.288i)29-s + (−0.330 + 0.943i)32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 116 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.740 + 0.672i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 116 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.740 + 0.672i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.899117 - 0.347500i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.899117 - 0.347500i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (0.752 + 1.19i)T \) |
| 29 | \( 1 + (5.15 - 1.55i)T \) |
| good | 3 | \( 1 + (2.34 + 1.87i)T^{2} \) |
| 5 | \( 1 + (-3.95 - 0.902i)T + (4.50 + 2.16i)T^{2} \) |
| 7 | \( 1 + (-4.36 + 5.47i)T^{2} \) |
| 11 | \( 1 + (-10.7 - 2.44i)T^{2} \) |
| 13 | \( 1 + (-2.86 + 2.28i)T + (2.89 - 12.6i)T^{2} \) |
| 17 | \( 1 + (4.03 - 4.03i)T - 17iT^{2} \) |
| 19 | \( 1 + (-14.8 + 11.8i)T^{2} \) |
| 23 | \( 1 + (20.7 - 9.97i)T^{2} \) |
| 31 | \( 1 + (13.4 - 27.9i)T^{2} \) |
| 37 | \( 1 + (11.9 - 1.34i)T + (36.0 - 8.23i)T^{2} \) |
| 41 | \( 1 + (4.80 + 4.80i)T + 41iT^{2} \) |
| 43 | \( 1 + (-18.6 - 38.7i)T^{2} \) |
| 47 | \( 1 + (45.8 + 10.4i)T^{2} \) |
| 53 | \( 1 + (3.23 - 14.1i)T + (-47.7 - 22.9i)T^{2} \) |
| 59 | \( 1 - 59T^{2} \) |
| 61 | \( 1 + (-4.90 + 14.0i)T + (-47.6 - 38.0i)T^{2} \) |
| 67 | \( 1 + (-14.9 - 65.3i)T^{2} \) |
| 71 | \( 1 + (-15.7 + 69.2i)T^{2} \) |
| 73 | \( 1 + (-1.82 + 2.90i)T + (-31.6 - 65.7i)T^{2} \) |
| 79 | \( 1 + (77.0 - 17.5i)T^{2} \) |
| 83 | \( 1 + (-51.7 - 64.8i)T^{2} \) |
| 89 | \( 1 + (-6.23 - 9.93i)T + (-38.6 + 80.1i)T^{2} \) |
| 97 | \( 1 + (-0.530 - 1.51i)T + (-75.8 + 60.4i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.38211153973663491512384469564, −12.43512812362581268428839617129, −10.99198539144003193934132915931, −10.40023712811952060099619908395, −9.260628535269801081796634580595, −8.548915259689680193004009757000, −6.67549315625065662213632175970, −5.53835775191612896377339106199, −3.38474136554691524730636333324, −1.92041031846691741497683828440,
1.97084430091104261189753726220, 4.97284380328115969489888507867, 5.85628116003536881022428172047, 6.88510378684618745652524867301, 8.584773000998341832020420401946, 9.186392760271150181079740068147, 10.22422845110112928589404868367, 11.29979450181099357688554324313, 13.28166309379293847669716783650, 13.70808805414617982154355714600