Properties

Label 116.2.l.a.19.1
Level $116$
Weight $2$
Character 116.19
Analytic conductor $0.926$
Analytic rank $0$
Dimension $12$
CM discriminant -4
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [116,2,Mod(3,116)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("116.3"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(116, base_ring=CyclotomicField(28)) chi = DirichletCharacter(H, H._module([14, 5])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 116 = 2^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 116.l (of order \(28\), degree \(12\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.926264663447\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\Q(\zeta_{28})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - x^{10} + x^{8} - x^{6} + x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{28}]$

Embedding invariants

Embedding label 19.1
Root \(-0.974928 - 0.222521i\) of defining polynomial
Character \(\chi\) \(=\) 116.19
Dual form 116.2.l.a.55.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.752407 - 1.19745i) q^{2} +(-0.867767 + 1.80194i) q^{4} +(3.95589 + 0.902906i) q^{5} +(2.81064 - 0.316683i) q^{8} +(-2.34549 - 1.87047i) q^{9} +(-1.89525 - 5.41633i) q^{10} +(2.86954 - 2.28838i) q^{13} +(-2.49396 - 3.12733i) q^{16} +(-4.03739 + 4.03739i) q^{17} +(-0.475025 + 4.21596i) q^{18} +(-5.05977 + 6.34475i) q^{20} +(10.3290 + 4.97417i) q^{25} +(-4.89928 - 1.71433i) q^{26} +(-5.15614 + 1.55379i) q^{29} +(-1.86834 + 5.33941i) q^{32} +(7.87233 + 1.79681i) q^{34} +(5.40581 - 2.60330i) q^{36} +(-11.9118 + 1.34214i) q^{37} +(11.4045 + 1.28498i) q^{40} +(-4.80592 - 4.80592i) q^{41} +(-7.58966 - 9.51713i) q^{45} +(4.36443 - 5.47282i) q^{49} +(-1.81528 - 16.1110i) q^{50} +(1.63343 + 7.15651i) q^{52} +(-3.23525 + 14.1745i) q^{53} +(5.74009 + 5.00513i) q^{58} +(4.90518 - 14.0182i) q^{61} +(7.79942 - 1.78017i) q^{64} +(13.4178 - 6.46166i) q^{65} +(-3.77161 - 10.7786i) q^{68} +(-7.18469 - 4.51444i) q^{72} +(1.82602 - 2.90610i) q^{73} +(10.5696 + 13.2539i) q^{74} +(-7.04215 - 14.6232i) q^{80} +(2.00269 + 8.77435i) q^{81} +(-2.13884 + 9.37086i) q^{82} +(-19.6168 + 12.3261i) q^{85} +(6.23997 + 9.93085i) q^{89} +(-5.68576 + 16.2490i) q^{90} +(0.530443 + 1.51592i) q^{97} +(-9.83725 - 1.10839i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 2 q^{2} - 4 q^{8} - 8 q^{10} + 8 q^{16} - 10 q^{17} - 6 q^{18} - 40 q^{20} + 22 q^{25} - 2 q^{26} + 4 q^{29} - 8 q^{32} + 42 q^{34} + 12 q^{36} - 14 q^{37} + 68 q^{40} - 2 q^{41} - 60 q^{45} - 14 q^{49}+ \cdots + 14 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/116\mathbb{Z}\right)^\times\).

\(n\) \(59\) \(89\)
\(\chi(n)\) \(-1\) \(e\left(\frac{9}{28}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.752407 1.19745i −0.532032 0.846724i
\(3\) 0 0 0.330279 0.943883i \(-0.392857\pi\)
−0.330279 + 0.943883i \(0.607143\pi\)
\(4\) −0.867767 + 1.80194i −0.433884 + 0.900969i
\(5\) 3.95589 + 0.902906i 1.76913 + 0.403792i 0.978124 0.208021i \(-0.0667021\pi\)
0.791003 + 0.611812i \(0.209559\pi\)
\(6\) 0 0
\(7\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(8\) 2.81064 0.316683i 0.993712 0.111964i
\(9\) −2.34549 1.87047i −0.781831 0.623490i
\(10\) −1.89525 5.41633i −0.599332 1.71279i
\(11\) 0 0 −0.993712 0.111964i \(-0.964286\pi\)
0.993712 + 0.111964i \(0.0357143\pi\)
\(12\) 0 0
\(13\) 2.86954 2.28838i 0.795867 0.634683i −0.138755 0.990327i \(-0.544310\pi\)
0.934621 + 0.355644i \(0.115738\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −2.49396 3.12733i −0.623490 0.781831i
\(17\) −4.03739 + 4.03739i −0.979211 + 0.979211i −0.999788 0.0205777i \(-0.993449\pi\)
0.0205777 + 0.999788i \(0.493449\pi\)
\(18\) −0.475025 + 4.21596i −0.111964 + 0.993712i
\(19\) 0 0 0.943883 0.330279i \(-0.107143\pi\)
−0.943883 + 0.330279i \(0.892857\pi\)
\(20\) −5.05977 + 6.34475i −1.13140 + 1.41873i
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(24\) 0 0
\(25\) 10.3290 + 4.97417i 2.06580 + 0.994834i
\(26\) −4.89928 1.71433i −0.960828 0.336208i
\(27\) 0 0
\(28\) 0 0
\(29\) −5.15614 + 1.55379i −0.957471 + 0.288531i
\(30\) 0 0
\(31\) 0 0 −0.532032 0.846724i \(-0.678571\pi\)
0.532032 + 0.846724i \(0.321429\pi\)
\(32\) −1.86834 + 5.33941i −0.330279 + 0.943883i
\(33\) 0 0
\(34\) 7.87233 + 1.79681i 1.35009 + 0.308150i
\(35\) 0 0
\(36\) 5.40581 2.60330i 0.900969 0.433884i
\(37\) −11.9118 + 1.34214i −1.95829 + 0.220646i −0.998245 0.0592161i \(-0.981140\pi\)
−0.960040 + 0.279862i \(0.909711\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 11.4045 + 1.28498i 1.80321 + 0.203173i
\(41\) −4.80592 4.80592i −0.750559 0.750559i 0.224025 0.974584i \(-0.428080\pi\)
−0.974584 + 0.224025i \(0.928080\pi\)
\(42\) 0 0
\(43\) 0 0 −0.846724 0.532032i \(-0.821429\pi\)
0.846724 + 0.532032i \(0.178571\pi\)
\(44\) 0 0
\(45\) −7.58966 9.51713i −1.13140 1.41873i
\(46\) 0 0
\(47\) 0 0 0.111964 0.993712i \(-0.464286\pi\)
−0.111964 + 0.993712i \(0.535714\pi\)
\(48\) 0 0
\(49\) 4.36443 5.47282i 0.623490 0.781831i
\(50\) −1.81528 16.1110i −0.256719 2.27844i
\(51\) 0 0
\(52\) 1.63343 + 7.15651i 0.226516 + 0.992430i
\(53\) −3.23525 + 14.1745i −0.444396 + 1.94702i −0.169674 + 0.985500i \(0.554272\pi\)
−0.274721 + 0.961524i \(0.588586\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 5.74009 + 5.00513i 0.753711 + 0.657206i
\(59\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(60\) 0 0
\(61\) 4.90518 14.0182i 0.628044 1.79485i 0.0215382 0.999768i \(-0.493144\pi\)
0.606506 0.795079i \(-0.292571\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 7.79942 1.78017i 0.974928 0.222521i
\(65\) 13.4178 6.46166i 1.66427 0.801470i
\(66\) 0 0
\(67\) 0 0 −0.781831 0.623490i \(-0.785714\pi\)
0.781831 + 0.623490i \(0.214286\pi\)
\(68\) −3.77161 10.7786i −0.457375 1.30710i
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 0.781831 0.623490i \(-0.214286\pi\)
−0.781831 + 0.623490i \(0.785714\pi\)
\(72\) −7.18469 4.51444i −0.846724 0.532032i
\(73\) 1.82602 2.90610i 0.213720 0.340133i −0.722609 0.691257i \(-0.757057\pi\)
0.936329 + 0.351123i \(0.114200\pi\)
\(74\) 10.5696 + 13.2539i 1.22870 + 1.54074i
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 −0.111964 0.993712i \(-0.535714\pi\)
0.111964 + 0.993712i \(0.464286\pi\)
\(80\) −7.04215 14.6232i −0.787336 1.63492i
\(81\) 2.00269 + 8.77435i 0.222521 + 0.974928i
\(82\) −2.13884 + 9.37086i −0.236195 + 1.03484i
\(83\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(84\) 0 0
\(85\) −19.6168 + 12.3261i −2.12775 + 1.33695i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 6.23997 + 9.93085i 0.661435 + 1.05267i 0.993978 + 0.109580i \(0.0349505\pi\)
−0.332543 + 0.943088i \(0.607907\pi\)
\(90\) −5.68576 + 16.2490i −0.599332 + 1.71279i
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 0.530443 + 1.51592i 0.0538583 + 0.153918i 0.967670 0.252220i \(-0.0811608\pi\)
−0.913812 + 0.406138i \(0.866875\pi\)
\(98\) −9.83725 1.10839i −0.993712 0.111964i
\(99\) 0 0
\(100\) −17.9263 + 14.2957i −1.79263 + 1.42957i
\(101\) −0.213260 0.134000i −0.0212202 0.0133335i 0.521380 0.853324i \(-0.325417\pi\)
−0.542600 + 0.839991i \(0.682560\pi\)
\(102\) 0 0
\(103\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(104\) 7.34056 7.34056i 0.719801 0.719801i
\(105\) 0 0
\(106\) 19.4075 6.79099i 1.88503 0.659599i
\(107\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(108\) 0 0
\(109\) −8.94785 18.5804i −0.857048 1.77968i −0.569700 0.821853i \(-0.692941\pi\)
−0.287348 0.957826i \(-0.592774\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 16.4867 + 5.76895i 1.55094 + 0.542697i 0.963763 0.266761i \(-0.0859536\pi\)
0.587177 + 0.809459i \(0.300239\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 1.67450 10.6394i 0.155474 0.987840i
\(117\) −11.0108 −1.01795
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 10.7242 + 2.44773i 0.974928 + 0.222521i
\(122\) −20.4768 + 4.67369i −1.85388 + 0.423136i
\(123\) 0 0
\(124\) 0 0
\(125\) 20.5072 + 16.3539i 1.83422 + 1.46274i
\(126\) 0 0
\(127\) 0 0 −0.993712 0.111964i \(-0.964286\pi\)
0.993712 + 0.111964i \(0.0357143\pi\)
\(128\) −8.00000 8.00000i −0.707107 0.707107i
\(129\) 0 0
\(130\) −17.8331 11.2053i −1.56407 0.982770i
\(131\) 0 0 0.532032 0.846724i \(-0.321429\pi\)
−0.532032 + 0.846724i \(0.678571\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) −10.0691 + 12.6262i −0.863417 + 1.08269i
\(137\) −0.614291 5.45198i −0.0524824 0.465794i −0.992276 0.124051i \(-0.960411\pi\)
0.939793 0.341743i \(-0.111017\pi\)
\(138\) 0 0
\(139\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 12.0000i 1.00000i
\(145\) −21.8000 + 1.49110i −1.81039 + 0.123829i
\(146\) −4.85382 −0.401705
\(147\) 0 0
\(148\) 7.91821 22.6290i 0.650873 1.86009i
\(149\) 9.81178 20.3744i 0.803813 1.66913i 0.0624318 0.998049i \(-0.480114\pi\)
0.741381 0.671085i \(-0.234171\pi\)
\(150\) 0 0
\(151\) 0 0 0.974928 0.222521i \(-0.0714286\pi\)
−0.974928 + 0.222521i \(0.928571\pi\)
\(152\) 0 0
\(153\) 17.0215 1.91786i 1.37611 0.155050i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 16.4086 + 16.4086i 1.30955 + 1.30955i 0.921741 + 0.387807i \(0.126767\pi\)
0.387807 + 0.921741i \(0.373233\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) −12.2119 + 19.4352i −0.965438 + 1.53649i
\(161\) 0 0
\(162\) 9.00000 9.00000i 0.707107 0.707107i
\(163\) 0 0 0.111964 0.993712i \(-0.464286\pi\)
−0.111964 + 0.993712i \(0.535714\pi\)
\(164\) 12.8304 4.48955i 1.00189 0.350575i
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 −0.433884 0.900969i \(-0.642857\pi\)
0.433884 + 0.900969i \(0.357143\pi\)
\(168\) 0 0
\(169\) 0.104795 0.459135i 0.00806112 0.0353181i
\(170\) 29.5197 + 14.2159i 2.26406 + 1.09031i
\(171\) 0 0
\(172\) 0 0
\(173\) 9.68526i 0.736356i −0.929755 0.368178i \(-0.879982\pi\)
0.929755 0.368178i \(-0.120018\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 7.19669 14.9441i 0.539415 1.12011i
\(179\) 0 0 −0.974928 0.222521i \(-0.928571\pi\)
0.974928 + 0.222521i \(0.0714286\pi\)
\(180\) 23.7353 5.41744i 1.76913 0.403792i
\(181\) −3.97671 + 1.91508i −0.295586 + 0.142347i −0.575800 0.817591i \(-0.695309\pi\)
0.280213 + 0.959938i \(0.409595\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −48.3335 5.44588i −3.55355 0.400389i
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(192\) 0 0
\(193\) 10.5949 3.70732i 0.762639 0.266859i 0.0791925 0.996859i \(-0.474766\pi\)
0.683447 + 0.730000i \(0.260480\pi\)
\(194\) 1.41613 1.77576i 0.101672 0.127492i
\(195\) 0 0
\(196\) 6.07437 + 12.6136i 0.433884 + 0.900969i
\(197\) 4.59379 + 20.1267i 0.327294 + 1.43397i 0.824266 + 0.566202i \(0.191588\pi\)
−0.496972 + 0.867766i \(0.665555\pi\)
\(198\) 0 0
\(199\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(200\) 30.6063 + 10.7096i 2.16419 + 0.757283i
\(201\) 0 0
\(202\) 0.356191i 0.0250615i
\(203\) 0 0
\(204\) 0 0
\(205\) −14.6724 23.3510i −1.02476 1.63090i
\(206\) 0 0
\(207\) 0 0
\(208\) −14.3130 3.26685i −0.992430 0.226516i
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 0.993712 0.111964i \(-0.0357143\pi\)
−0.993712 + 0.111964i \(0.964286\pi\)
\(212\) −22.7342 18.1299i −1.56139 1.24517i
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) −15.5166 + 24.6946i −1.05092 + 1.67253i
\(219\) 0 0
\(220\) 0 0
\(221\) −2.34636 + 20.8245i −0.157833 + 1.40081i
\(222\) 0 0
\(223\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(224\) 0 0
\(225\) −14.9225 30.9869i −0.994834 2.06580i
\(226\) −5.49670 24.0826i −0.365635 1.60195i
\(227\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(228\) 0 0
\(229\) −11.8685 4.15295i −0.784289 0.274435i −0.0917189 0.995785i \(-0.529236\pi\)
−0.692570 + 0.721350i \(0.743522\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −14.0000 + 6.00000i −0.919145 + 0.393919i
\(233\) −3.70143 −0.242489 −0.121244 0.992623i \(-0.538688\pi\)
−0.121244 + 0.992623i \(0.538688\pi\)
\(234\) 8.28463 + 13.1849i 0.541583 + 0.861925i
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(240\) 0 0
\(241\) 21.4751 + 17.1258i 1.38333 + 1.10317i 0.982343 + 0.187088i \(0.0599048\pi\)
0.400989 + 0.916083i \(0.368667\pi\)
\(242\) −5.13794 14.6834i −0.330279 0.943883i
\(243\) 0 0
\(244\) 21.0034 + 21.0034i 1.34460 + 1.34460i
\(245\) 22.2066 17.7092i 1.41873 1.13140i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 4.15325 36.8611i 0.262675 2.33130i
\(251\) 0 0 0.943883 0.330279i \(-0.107143\pi\)
−0.943883 + 0.330279i \(0.892857\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) −3.56033 + 15.5988i −0.222521 + 0.974928i
\(257\) −25.1940 12.1328i −1.57156 0.756823i −0.573506 0.819201i \(-0.694417\pi\)
−0.998053 + 0.0623783i \(0.980131\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 29.7852i 1.84720i
\(261\) 15.0000 + 6.00000i 0.928477 + 0.371391i
\(262\) 0 0
\(263\) 0 0 −0.532032 0.846724i \(-0.678571\pi\)
0.532032 + 0.846724i \(0.321429\pi\)
\(264\) 0 0
\(265\) −25.5966 + 53.1518i −1.57238 + 3.26509i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −16.8565 + 1.89927i −1.02776 + 0.115801i −0.609711 0.792624i \(-0.708714\pi\)
−0.418049 + 0.908425i \(0.637286\pi\)
\(270\) 0 0
\(271\) 0 0 −0.330279 0.943883i \(-0.607143\pi\)
0.330279 + 0.943883i \(0.392857\pi\)
\(272\) 22.6953 + 2.55715i 1.37611 + 0.155050i
\(273\) 0 0
\(274\) −6.06627 + 4.83769i −0.366477 + 0.292256i
\(275\) 0 0
\(276\) 0 0
\(277\) −7.05673 8.84886i −0.423998 0.531676i 0.523250 0.852179i \(-0.324720\pi\)
−0.947248 + 0.320503i \(0.896148\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −14.2742 + 17.8992i −0.851525 + 1.06778i 0.145397 + 0.989373i \(0.453554\pi\)
−0.996922 + 0.0784048i \(0.975017\pi\)
\(282\) 0 0
\(283\) 0 0 −0.433884 0.900969i \(-0.642857\pi\)
0.433884 + 0.900969i \(0.357143\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 14.3694 9.02888i 0.846724 0.532032i
\(289\) 15.6010i 0.917706i
\(290\) 18.1880 + 24.9825i 1.06804 + 1.46702i
\(291\) 0 0
\(292\) 3.65205 + 5.81220i 0.213720 + 0.340133i
\(293\) −10.1630 + 29.0442i −0.593728 + 1.69678i 0.116841 + 0.993151i \(0.462723\pi\)
−0.710569 + 0.703627i \(0.751563\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −33.0547 + 7.54453i −1.92127 + 0.438517i
\(297\) 0 0
\(298\) −31.7797 + 3.58072i −1.84095 + 0.207425i
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 32.0615 51.0255i 1.83583 2.92171i
\(306\) −15.1036 18.9393i −0.863417 1.08269i
\(307\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 −0.111964 0.993712i \(-0.535714\pi\)
0.111964 + 0.993712i \(0.464286\pi\)
\(312\) 0 0
\(313\) 6.82886 + 29.9192i 0.385990 + 1.69113i 0.678280 + 0.734803i \(0.262726\pi\)
−0.292290 + 0.956330i \(0.594417\pi\)
\(314\) 7.30251 31.9944i 0.412104 1.80555i
\(315\) 0 0
\(316\) 0 0
\(317\) 29.9850 18.8408i 1.68413 1.05821i 0.786318 0.617822i \(-0.211985\pi\)
0.897809 0.440386i \(-0.145158\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 32.4610 1.81462
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) −17.5487 4.00538i −0.974928 0.222521i
\(325\) 41.0222 9.36305i 2.27550 0.519369i
\(326\) 0 0
\(327\) 0 0
\(328\) −15.0297 11.9858i −0.829876 0.661804i
\(329\) 0 0
\(330\) 0 0
\(331\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(332\) 0 0
\(333\) 30.4495 + 19.1327i 1.66862 + 1.04846i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 3.08561 27.3855i 0.168084 1.49179i −0.572546 0.819873i \(-0.694044\pi\)
0.740630 0.671913i \(-0.234527\pi\)
\(338\) −0.628639 + 0.219970i −0.0341934 + 0.0119648i
\(339\) 0 0
\(340\) −5.18797 46.0445i −0.281357 2.49711i
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) −11.5976 + 7.28725i −0.623491 + 0.391765i
\(347\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(348\) 0 0
\(349\) −17.7600 −0.950673 −0.475336 0.879804i \(-0.657674\pi\)
−0.475336 + 0.879804i \(0.657674\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 36.6330 + 8.36124i 1.94978 + 0.445024i 0.976882 + 0.213780i \(0.0685777\pi\)
0.972896 + 0.231244i \(0.0742795\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −23.3096 + 2.62636i −1.23541 + 0.139197i
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 −0.993712 0.111964i \(-0.964286\pi\)
0.993712 + 0.111964i \(0.0357143\pi\)
\(360\) −24.3457 24.3457i −1.28313 1.28313i
\(361\) 14.8548 11.8463i 0.781831 0.623490i
\(362\) 5.28532 + 3.32098i 0.277790 + 0.174547i
\(363\) 0 0
\(364\) 0 0
\(365\) 9.84748 9.84748i 0.515441 0.515441i
\(366\) 0 0
\(367\) 0 0 0.943883 0.330279i \(-0.107143\pi\)
−0.943883 + 0.330279i \(0.892857\pi\)
\(368\) 0 0
\(369\) 2.28293 + 20.2616i 0.118845 + 1.05478i
\(370\) 29.8453 + 61.9744i 1.55158 + 3.22190i
\(371\) 0 0
\(372\) 0 0
\(373\) −33.2230 15.9994i −1.72022 0.828416i −0.989289 0.145968i \(-0.953370\pi\)
−0.730934 0.682448i \(-0.760916\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −11.2401 + 16.2579i −0.578894 + 0.837322i
\(378\) 0 0
\(379\) 0 0 −0.532032 0.846724i \(-0.678571\pi\)
0.532032 + 0.846724i \(0.321429\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 0.974928 0.222521i \(-0.0714286\pi\)
−0.974928 + 0.222521i \(0.928571\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −12.4110 9.89746i −0.631705 0.503768i
\(387\) 0 0
\(388\) −3.19189 0.359640i −0.162044 0.0182579i
\(389\) −0.816430 0.816430i −0.0413947 0.0413947i 0.686106 0.727501i \(-0.259318\pi\)
−0.727501 + 0.686106i \(0.759318\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 10.5337 16.7643i 0.532032 0.846724i
\(393\) 0 0
\(394\) 20.6443 20.6443i 1.04004 1.04004i
\(395\) 0 0
\(396\) 0 0
\(397\) −2.02219 + 2.53574i −0.101491 + 0.127265i −0.829983 0.557789i \(-0.811650\pi\)
0.728492 + 0.685054i \(0.240221\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) −10.2042 44.7075i −0.510209 2.23537i
\(401\) 3.46096 15.1635i 0.172832 0.757227i −0.811992 0.583669i \(-0.801617\pi\)
0.984824 0.173558i \(-0.0555263\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0.426521 0.268001i 0.0212202 0.0133335i
\(405\) 36.5186i 1.81462i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 13.3500 38.1520i 0.660114 1.88650i 0.295433 0.955363i \(-0.404536\pi\)
0.364680 0.931133i \(-0.381178\pi\)
\(410\) −16.9220 + 35.1389i −0.835718 + 1.73539i
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 6.85733 + 19.5971i 0.336208 + 0.960828i
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 0.781831 0.623490i \(-0.214286\pi\)
−0.781831 + 0.623490i \(0.785714\pi\)
\(420\) 0 0
\(421\) −0.752407 + 1.19745i −0.0366701 + 0.0583601i −0.864556 0.502536i \(-0.832400\pi\)
0.827886 + 0.560896i \(0.189543\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) −4.60428 + 40.8641i −0.223604 + 1.98454i
\(425\) −61.7848 + 21.6194i −2.99700 + 1.04870i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(432\) 0 0
\(433\) −5.98724 + 3.76203i −0.287729 + 0.180792i −0.668161 0.744017i \(-0.732918\pi\)
0.380432 + 0.924809i \(0.375775\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 41.2454 1.97529
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 0.433884 0.900969i \(-0.357143\pi\)
−0.433884 + 0.900969i \(0.642857\pi\)
\(440\) 0 0
\(441\) −20.4735 + 4.67294i −0.974928 + 0.222521i
\(442\) 26.7017 12.8589i 1.27007 0.611634i
\(443\) 0 0 0.993712 0.111964i \(-0.0357143\pi\)
−0.993712 + 0.111964i \(0.964286\pi\)
\(444\) 0 0
\(445\) 15.7180 + 44.9194i 0.745104 + 2.12939i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −28.0566 17.6291i −1.32407 0.831969i −0.330350 0.943858i \(-0.607167\pi\)
−0.993721 + 0.111889i \(0.964310\pi\)
\(450\) −25.8775 + 41.1837i −1.21987 + 1.94142i
\(451\) 0 0
\(452\) −24.7019 + 24.7019i −1.16188 + 1.16188i
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 8.64814 + 17.9580i 0.404543 + 0.840042i 0.999346 + 0.0361701i \(0.0115158\pi\)
−0.594803 + 0.803872i \(0.702770\pi\)
\(458\) 3.95696 + 17.3366i 0.184897 + 0.810085i
\(459\) 0 0
\(460\) 0 0
\(461\) −12.0137 4.20377i −0.559533 0.195789i 0.0356714 0.999364i \(-0.488643\pi\)
−0.595204 + 0.803575i \(0.702929\pi\)
\(462\) 0 0
\(463\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(464\) 17.7184 + 12.2498i 0.822556 + 0.568685i
\(465\) 0 0
\(466\) 2.78498 + 4.43227i 0.129012 + 0.205321i
\(467\) 0 0 0.330279 0.943883i \(-0.392857\pi\)
−0.330279 + 0.943883i \(0.607143\pi\)
\(468\) 9.55484 19.8408i 0.441673 0.917143i
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 34.1013 27.1949i 1.56139 1.24517i
\(478\) 0 0
\(479\) 0 0 0.532032 0.846724i \(-0.321429\pi\)
−0.532032 + 0.846724i \(0.678571\pi\)
\(480\) 0 0
\(481\) −31.1100 + 31.1100i −1.41849 + 1.41849i
\(482\) 4.34928 38.6009i 0.198104 1.75822i
\(483\) 0 0
\(484\) −13.7168 + 17.2003i −0.623490 + 0.781831i
\(485\) 0.729641 + 6.47574i 0.0331313 + 0.294048i
\(486\) 0 0
\(487\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(488\) 9.34738 40.9535i 0.423136 1.85388i
\(489\) 0 0
\(490\) −37.9143 13.2668i −1.71279 0.599332i
\(491\) 0 0 0.846724 0.532032i \(-0.178571\pi\)
−0.846724 + 0.532032i \(0.821429\pi\)
\(492\) 0 0
\(493\) 14.5441 27.0906i 0.655033 1.22010i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 0 0 0.974928 0.222521i \(-0.0714286\pi\)
−0.974928 + 0.222521i \(0.928571\pi\)
\(500\) −47.2642 + 22.7613i −2.11372 + 1.01791i
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 −0.330279 0.943883i \(-0.607143\pi\)
0.330279 + 0.943883i \(0.392857\pi\)
\(504\) 0 0
\(505\) −0.722644 0.722644i −0.0321573 0.0321573i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −22.0116 27.6016i −0.975645 1.22342i −0.974722 0.223421i \(-0.928278\pi\)
−0.000922874 1.00000i \(-0.500294\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 21.3576 7.47336i 0.943883 0.330279i
\(513\) 0 0
\(514\) 4.42775 + 39.2973i 0.195299 + 1.73333i
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 35.6663 22.4106i 1.56407 0.982770i
\(521\) 44.9900i 1.97105i −0.169532 0.985525i \(-0.554226\pi\)
0.169532 0.985525i \(-0.445774\pi\)
\(522\) −4.10141 22.4762i −0.179514 0.983755i
\(523\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −20.7223 + 9.97933i −0.900969 + 0.433884i
\(530\) 82.9056 9.34122i 3.60119 0.405757i
\(531\) 0 0
\(532\) 0 0
\(533\) −24.7886 2.79300i −1.07371 0.120978i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 14.9572 + 18.7558i 0.644852 + 0.808619i
\(539\) 0 0
\(540\) 0 0
\(541\) 30.9116 10.8164i 1.32899 0.465035i 0.429934 0.902861i \(-0.358537\pi\)
0.899060 + 0.437826i \(0.144251\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) −14.0141 29.1005i −0.600848 1.24767i
\(545\) −18.6203 81.5810i −0.797608 3.49455i
\(546\) 0 0
\(547\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(548\) 10.3572 + 3.62414i 0.442437 + 0.154816i
\(549\) −37.7257 + 23.7046i −1.61009 + 1.01169i
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) −5.28652 + 15.1080i −0.224603 + 0.641878i
\(555\) 0 0
\(556\) 0 0
\(557\) −8.52043 + 1.94473i −0.361022 + 0.0824009i −0.399185 0.916871i \(-0.630707\pi\)
0.0381624 + 0.999272i \(0.487850\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 32.1734 + 3.62507i 1.35715 + 0.152914i
\(563\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(564\) 0 0
\(565\) 60.0108 + 37.7073i 2.52467 + 1.58636i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −5.18872 + 46.0512i −0.217523 + 1.93057i 0.127230 + 0.991873i \(0.459391\pi\)
−0.344753 + 0.938693i \(0.612037\pi\)
\(570\) 0 0
\(571\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) −21.6233 10.4132i −0.900969 0.433884i
\(577\) 13.1819 + 4.61255i 0.548771 + 0.192023i 0.590401 0.807110i \(-0.298970\pi\)
−0.0416305 + 0.999133i \(0.513255\pi\)
\(578\) −18.6814 + 11.7383i −0.777044 + 0.488249i
\(579\) 0 0
\(580\) 16.2305 40.5762i 0.673934 1.68484i
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 4.21199 8.74628i 0.174293 0.361924i
\(585\) −43.5576 9.94175i −1.80089 0.411041i
\(586\) 42.4256 9.68337i 1.75259 0.400016i
\(587\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 33.9048 + 33.9048i 1.39348 + 1.39348i
\(593\) −20.1985 + 16.1077i −0.829452 + 0.661466i −0.943267 0.332036i \(-0.892264\pi\)
0.113815 + 0.993502i \(0.463693\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 28.1990 + 35.3604i 1.15508 + 1.44842i
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 0.943883 0.330279i \(-0.107143\pi\)
−0.943883 + 0.330279i \(0.892857\pi\)
\(600\) 0 0
\(601\) 3.00849 + 26.7011i 0.122719 + 1.08916i 0.892561 + 0.450926i \(0.148906\pi\)
−0.769842 + 0.638234i \(0.779665\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 40.2137 + 19.3659i 1.63492 + 0.787336i
\(606\) 0 0
\(607\) 0 0 0.846724 0.532032i \(-0.178571\pi\)
−0.846724 + 0.532032i \(0.821429\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) −85.2237 −3.45061
\(611\) 0 0
\(612\) −11.3148 + 32.3359i −0.457375 + 1.30710i
\(613\) 20.4736 42.5140i 0.826923 1.71712i 0.140299 0.990109i \(-0.455194\pi\)
0.686624 0.727013i \(-0.259092\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 33.9633 3.82674i 1.36731 0.154059i 0.602400 0.798195i \(-0.294211\pi\)
0.764911 + 0.644136i \(0.222783\pi\)
\(618\) 0 0
\(619\) 0 0 −0.330279 0.943883i \(-0.607143\pi\)
0.330279 + 0.943883i \(0.392857\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 30.6187 + 38.3947i 1.22475 + 1.53579i
\(626\) 30.6886 30.6886i 1.22656 1.22656i
\(627\) 0 0
\(628\) −43.8061 + 15.3284i −1.74805 + 0.611670i
\(629\) 42.6738 53.5112i 1.70152 2.13363i
\(630\) 0 0
\(631\) 0 0 −0.433884 0.900969i \(-0.642857\pi\)
0.433884 + 0.900969i \(0.357143\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) −45.1219 21.7296i −1.79202 0.862991i
\(635\) 0 0
\(636\) 0 0
\(637\) 25.6919i 1.01795i
\(638\) 0 0
\(639\) 0 0
\(640\) −24.4239 38.8704i −0.965438 1.53649i
\(641\) 9.80879 28.0319i 0.387424 1.10719i −0.570779 0.821104i \(-0.693359\pi\)
0.958203 0.286090i \(-0.0923556\pi\)
\(642\) 0 0
\(643\) 0 0 −0.974928 0.222521i \(-0.928571\pi\)
0.974928 + 0.222521i \(0.0714286\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 −0.781831 0.623490i \(-0.785714\pi\)
0.781831 + 0.623490i \(0.214286\pi\)
\(648\) 8.40753 + 24.0273i 0.330279 + 0.943883i
\(649\) 0 0
\(650\) −42.0772 42.0772i −1.65040 1.65040i
\(651\) 0 0
\(652\) 0 0
\(653\) −5.32494 + 8.47460i −0.208381 + 0.331637i −0.934520 0.355912i \(-0.884170\pi\)
0.726138 + 0.687549i \(0.241313\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −3.04391 + 27.0155i −0.118845 + 1.05478i
\(657\) −9.71870 + 3.40072i −0.379163 + 0.132675i
\(658\) 0 0
\(659\) 0 0 −0.111964 0.993712i \(-0.535714\pi\)
0.111964 + 0.993712i \(0.464286\pi\)
\(660\) 0 0
\(661\) 7.23322 + 31.6908i 0.281340 + 1.23263i 0.896077 + 0.443898i \(0.146405\pi\)
−0.614737 + 0.788732i \(0.710738\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 50.8572i 1.97068i
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −20.4740 + 4.67305i −0.789213 + 0.180133i −0.598085 0.801432i \(-0.704072\pi\)
−0.191128 + 0.981565i \(0.561215\pi\)
\(674\) −35.1144 + 16.9102i −1.35256 + 0.651357i
\(675\) 0 0
\(676\) 0.736395 + 0.587256i 0.0283229 + 0.0225868i
\(677\) 17.1405 + 48.9847i 0.658762 + 1.88263i 0.398936 + 0.916979i \(0.369380\pi\)
0.259826 + 0.965655i \(0.416335\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) −51.2325 + 40.8565i −1.96468 + 1.56678i
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(684\) 0 0
\(685\) 2.49256 22.1221i 0.0952358 0.845241i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 23.1531 + 48.0779i 0.882063 + 1.83162i
\(690\) 0 0
\(691\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(692\) 17.4522 + 8.40455i 0.663434 + 0.319493i
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 38.8068 1.46991
\(698\) 13.3628 + 21.2667i 0.505788 + 0.804958i
\(699\) 0 0
\(700\) 0 0
\(701\) −47.2558 10.7858i −1.78483 0.407375i −0.802819 0.596222i \(-0.796668\pi\)
−0.982006 + 0.188847i \(0.939525\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) −17.5508 50.1572i −0.660532 1.88769i
\(707\) 0 0
\(708\) 0 0
\(709\) −41.5194 + 33.1106i −1.55929 + 1.24349i −0.733066 + 0.680158i \(0.761911\pi\)
−0.826227 + 0.563337i \(0.809517\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 20.6833 + 25.9360i 0.775138 + 0.971992i
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(720\) −10.8349 + 47.4707i −0.403792 + 1.76913i
\(721\) 0 0
\(722\) −25.3622 8.87462i −0.943883 0.330279i
\(723\) 0 0
\(724\) 8.82763i 0.328076i
\(725\) −60.9864 9.59850i −2.26498 0.356479i
\(726\) 0 0
\(727\) 0 0 −0.532032 0.846724i \(-0.678571\pi\)
0.532032 + 0.846724i \(0.321429\pi\)
\(728\) 0 0
\(729\) 11.7149 24.3262i 0.433884 0.900969i
\(730\) −19.2012 4.38254i −0.710667 0.162205i
\(731\) 0 0
\(732\) 0 0
\(733\) −35.1330 + 3.95854i −1.29767 + 0.146212i −0.733637 0.679541i \(-0.762179\pi\)
−0.564031 + 0.825754i \(0.690750\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 22.5445 17.9787i 0.829876 0.661804i
\(739\) 0 0 −0.846724 0.532032i \(-0.821429\pi\)
0.846724 + 0.532032i \(0.178571\pi\)
\(740\) 51.7554 82.3682i 1.90257 3.02792i
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 0.111964 0.993712i \(-0.464286\pi\)
−0.111964 + 0.993712i \(0.535714\pi\)
\(744\) 0 0
\(745\) 57.2105 71.7397i 2.09603 2.62834i
\(746\) 5.83882 + 51.8209i 0.213774 + 1.89730i
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 −0.943883 0.330279i \(-0.892857\pi\)
0.943883 + 0.330279i \(0.107143\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 27.9251 + 1.22690i 1.01697 + 0.0446810i
\(755\) 0 0
\(756\) 0 0
\(757\) −7.83058 + 22.3785i −0.284607 + 0.813361i 0.709475 + 0.704731i \(0.248932\pi\)
−0.994082 + 0.108630i \(0.965354\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 4.29763 2.06963i 0.155789 0.0750239i −0.354365 0.935107i \(-0.615303\pi\)
0.510154 + 0.860083i \(0.329589\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 69.0667 + 7.78195i 2.49711 + 0.281357i
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −15.6669 + 24.9338i −0.564963 + 0.899134i −0.999999 0.00127898i \(-0.999593\pi\)
0.435036 + 0.900413i \(0.356736\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −2.51356 + 22.3085i −0.0904651 + 0.802900i
\(773\) −37.6766 + 13.1836i −1.35513 + 0.474181i −0.907506 0.420040i \(-0.862016\pi\)
−0.447626 + 0.894221i \(0.647730\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 1.97095 + 4.09272i 0.0707530 + 0.146920i
\(777\) 0 0
\(778\) −0.363346 + 1.59192i −0.0130266 + 0.0570731i
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) −28.0000 −1.00000
\(785\) 50.0951 + 79.7259i 1.78797 + 2.84554i
\(786\) 0 0
\(787\) 0 0 0.433884 0.900969i \(-0.357143\pi\)
−0.433884 + 0.900969i \(0.642857\pi\)
\(788\) −40.2534 9.18758i −1.43397 0.327294i
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −18.0034 51.4507i −0.639319 1.82707i
\(794\) 4.55793 + 0.513556i 0.161755 + 0.0182254i
\(795\) 0 0
\(796\) 0 0
\(797\) −32.1247 20.1853i −1.13791 0.714999i −0.174936 0.984580i \(-0.555972\pi\)
−0.962978 + 0.269581i \(0.913115\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) −45.8572 + 45.8572i −1.62130 + 1.62130i
\(801\) 3.93954 34.9644i 0.139197 1.23541i
\(802\) −20.7615 + 7.26477i −0.733114 + 0.256528i
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) −0.641834 0.309091i −0.0225796 0.0108738i
\(809\) 46.7738 + 16.3669i 1.64448 + 0.575429i 0.984428 0.175791i \(-0.0562482\pi\)
0.660053 + 0.751219i \(0.270534\pi\)
\(810\) 43.7292 27.4768i 1.53649 0.965438i
\(811\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) −55.7297 + 12.7199i −1.94854 + 0.444742i
\(819\) 0 0
\(820\) 54.8093 6.17552i 1.91402 0.215659i
\(821\) −12.6437 10.0830i −0.441269 0.351900i 0.377513 0.926004i \(-0.376779\pi\)
−0.818783 + 0.574104i \(0.805351\pi\)
\(822\) 0 0
\(823\) 0 0 −0.993712 0.111964i \(-0.964286\pi\)
0.993712 + 0.111964i \(0.0357143\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 0.532032 0.846724i \(-0.321429\pi\)
−0.532032 + 0.846724i \(0.678571\pi\)
\(828\) 0 0
\(829\) −31.3702 + 31.3702i −1.08953 + 1.08953i −0.0939545 + 0.995576i \(0.529951\pi\)
−0.995576 + 0.0939545i \(0.970049\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 18.3070 22.9563i 0.634683 0.795867i
\(833\) 4.47501 + 39.7168i 0.155050 + 1.37611i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 0.846724 0.532032i \(-0.178571\pi\)
−0.846724 + 0.532032i \(0.821429\pi\)
\(840\) 0 0
\(841\) 24.1715 16.0231i 0.833500 0.552520i
\(842\) 2.00000 0.0689246
\(843\) 0 0
\(844\) 0 0
\(845\) 0.829111 1.72167i 0.0285223 0.0592272i
\(846\) 0 0
\(847\) 0 0
\(848\) 52.3970 25.2331i 1.79932 0.866507i
\(849\) 0 0
\(850\) 72.3754 + 57.7175i 2.48246 + 1.97969i
\(851\) 0 0
\(852\) 0 0
\(853\) −28.9376 28.9376i −0.990806 0.990806i 0.00915214 0.999958i \(-0.497087\pi\)
−0.999958 + 0.00915214i \(0.997087\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −4.98792 6.25465i −0.170384 0.213655i 0.689307 0.724470i \(-0.257915\pi\)
−0.859691 + 0.510815i \(0.829344\pi\)
\(858\) 0 0
\(859\) 0 0 0.111964 0.993712i \(-0.464286\pi\)
−0.111964 + 0.993712i \(0.535714\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 −0.433884 0.900969i \(-0.642857\pi\)
0.433884 + 0.900969i \(0.357143\pi\)
\(864\) 0 0
\(865\) 8.74487 38.3138i 0.297335 1.30271i
\(866\) 9.00969 + 4.33884i 0.306162 + 0.147440i
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) −31.0333 49.3892i −1.05092 1.67253i
\(873\) 1.59133 4.54775i 0.0538583 0.153918i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 10.8116 5.20660i 0.365083 0.175815i −0.242344 0.970190i \(-0.577916\pi\)
0.607427 + 0.794376i \(0.292202\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 53.3591 + 6.01213i 1.79772 + 0.202554i 0.946597 0.322420i \(-0.104496\pi\)
0.851118 + 0.524974i \(0.175925\pi\)
\(882\) 21.0000 + 21.0000i 0.707107 + 0.707107i
\(883\) 0 0 0.781831 0.623490i \(-0.214286\pi\)
−0.781831 + 0.623490i \(0.785714\pi\)
\(884\) −35.4884 22.2988i −1.19360 0.749991i
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 41.9624 52.6192i 1.40658 1.76380i
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 46.8606i 1.56376i
\(899\) 0 0
\(900\) 68.7858 2.29286
\(901\) −44.1662 70.2901i −1.47139 2.34170i
\(902\) 0 0
\(903\) 0 0
\(904\) 48.1652 + 10.9934i 1.60195 + 0.365635i
\(905\) −17.4606 + 3.98526i −0.580409 + 0.132474i
\(906\) 0 0
\(907\) 0 0 0.993712 0.111964i \(-0.0357143\pi\)
−0.993712 + 0.111964i \(0.964286\pi\)
\(908\) 0 0
\(909\) 0.249557 + 0.713194i 0.00827729 + 0.0236551i
\(910\) 0 0
\(911\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 14.9969 23.8675i 0.496054 0.789465i
\(915\) 0 0
\(916\) 17.7824 17.7824i 0.587547 0.587547i
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 4.00538 + 17.5487i 0.131910 + 0.577936i
\(923\) 0 0
\(924\) 0 0
\(925\) −129.713 45.3884i −4.26492 1.49236i
\(926\) 0 0
\(927\) 0 0
\(928\) 1.33712 30.4337i 0.0438931 0.999036i
\(929\) 16.0801 0.527571 0.263786 0.964581i \(-0.415029\pi\)
0.263786 + 0.964581i \(0.415029\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 3.21198 6.66975i 0.105212 0.218475i
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) −30.9475 + 3.48695i −1.01155 + 0.113974i
\(937\) −47.8641 38.1704i −1.56365 1.24697i −0.784046 0.620703i \(-0.786847\pi\)
−0.779607 0.626269i \(-0.784581\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −15.6366 + 12.4698i −0.509740 + 0.406504i −0.844300 0.535870i \(-0.819984\pi\)
0.334561 + 0.942374i \(0.391412\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 0.943883 0.330279i \(-0.107143\pi\)
−0.943883 + 0.330279i \(0.892857\pi\)
\(948\) 0 0
\(949\) −1.41042 12.5178i −0.0457841 0.406345i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −0.785914 0.378476i −0.0254583 0.0122600i 0.421111 0.907009i \(-0.361640\pi\)
−0.446570 + 0.894749i \(0.647354\pi\)
\(954\) −58.2226 20.3730i −1.88503 0.659599i
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −13.4504 + 27.9300i −0.433884 + 0.900969i
\(962\) 60.6600 + 13.8453i 1.95576 + 0.446389i
\(963\) 0 0
\(964\) −49.4950 + 23.8356i −1.59413 + 0.767691i
\(965\) 45.2597 5.09954i 1.45696 0.164160i
\(966\) 0 0
\(967\) 0 0 −0.330279 0.943883i \(-0.607143\pi\)
0.330279 + 0.943883i \(0.392857\pi\)
\(968\) 30.9171 + 3.48352i 0.993712 + 0.111964i
\(969\) 0 0
\(970\) 7.20538 5.74610i 0.231351 0.184496i
\(971\) 0 0 −0.846724 0.532032i \(-0.821429\pi\)
0.846724 + 0.532032i \(0.178571\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) −56.0728 + 19.6207i −1.79485 + 0.628044i
\(977\) −33.3327 + 41.7979i −1.06641 + 1.33723i −0.127971 + 0.991778i \(0.540847\pi\)
−0.938436 + 0.345454i \(0.887725\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 12.6407 + 55.3824i 0.403792 + 1.76913i
\(981\) −13.7669 + 60.3169i −0.439544 + 1.92577i
\(982\) 0 0
\(983\) 0 0 −0.943883 0.330279i \(-0.892857\pi\)
0.943883 + 0.330279i \(0.107143\pi\)
\(984\) 0 0
\(985\) 83.7668i 2.66903i
\(986\) −43.3826 + 2.96733i −1.38158 + 0.0944989i
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 0 0 −0.974928 0.222521i \(-0.928571\pi\)
0.974928 + 0.222521i \(0.0714286\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 4.95142 + 0.557891i 0.156813 + 0.0176686i 0.190022 0.981780i \(-0.439144\pi\)
−0.0332089 + 0.999448i \(0.510573\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 116.2.l.a.19.1 12
4.3 odd 2 CM 116.2.l.a.19.1 12
29.26 odd 28 inner 116.2.l.a.55.1 yes 12
116.55 even 28 inner 116.2.l.a.55.1 yes 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
116.2.l.a.19.1 12 1.1 even 1 trivial
116.2.l.a.19.1 12 4.3 odd 2 CM
116.2.l.a.55.1 yes 12 29.26 odd 28 inner
116.2.l.a.55.1 yes 12 116.55 even 28 inner