L(s) = 1 | + (−1.96 − 1.96i)3-s + (−0.254 − 2.22i)5-s + (−1.87 + 1.87i)7-s + 4.74i·9-s + (4.88 + 4.88i)13-s + (−3.87 + 4.87i)15-s − 2.41i·19-s + 7.36·21-s + (6.74 + 6.74i)23-s + (−4.87 + 1.12i)25-s + (3.42 − 3.42i)27-s + (4.63 + 3.68i)35-s − 19.2i·39-s + (10.5 − 1.20i)45-s − 7i·49-s + ⋯ |
L(s) = 1 | + (−1.13 − 1.13i)3-s + (−0.113 − 0.993i)5-s + (−0.707 + 0.707i)7-s + 1.58i·9-s + (1.35 + 1.35i)13-s + (−0.999 + 1.25i)15-s − 0.552i·19-s + 1.60·21-s + (1.40 + 1.40i)23-s + (−0.974 + 0.225i)25-s + (0.659 − 0.659i)27-s + (0.782 + 0.622i)35-s − 3.07i·39-s + (1.57 − 0.179i)45-s − i·49-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1120 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.904 + 0.425i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1120 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.904 + 0.425i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.9054362394\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9054362394\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (0.254 + 2.22i)T \) |
| 7 | \( 1 + (1.87 - 1.87i)T \) |
good | 3 | \( 1 + (1.96 + 1.96i)T + 3iT^{2} \) |
| 11 | \( 1 - 11T^{2} \) |
| 13 | \( 1 + (-4.88 - 4.88i)T + 13iT^{2} \) |
| 17 | \( 1 + 17iT^{2} \) |
| 19 | \( 1 + 2.41iT - 19T^{2} \) |
| 23 | \( 1 + (-6.74 - 6.74i)T + 23iT^{2} \) |
| 29 | \( 1 + 29T^{2} \) |
| 31 | \( 1 - 31T^{2} \) |
| 37 | \( 1 + 37iT^{2} \) |
| 41 | \( 1 - 41T^{2} \) |
| 43 | \( 1 - 43iT^{2} \) |
| 47 | \( 1 + 47iT^{2} \) |
| 53 | \( 1 - 53iT^{2} \) |
| 59 | \( 1 + 10.4iT - 59T^{2} \) |
| 61 | \( 1 + 6.47T + 61T^{2} \) |
| 67 | \( 1 + 67iT^{2} \) |
| 71 | \( 1 - 15.2T + 71T^{2} \) |
| 73 | \( 1 - 73iT^{2} \) |
| 79 | \( 1 - 8.25iT - 79T^{2} \) |
| 83 | \( 1 + (-12.2 - 12.2i)T + 83iT^{2} \) |
| 89 | \( 1 + 89T^{2} \) |
| 97 | \( 1 + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.487516992908963015819277078799, −9.028697918944278529368078067305, −8.098106057667941735027784395267, −7.00444317041011216256185486951, −6.42806103246830757796047201558, −5.63398283866769738331705109735, −4.91539054181101343907412625580, −3.59500492625356168714462192381, −1.91854399737189503265027566937, −0.945198921250729642269508848638,
0.63894087885402324468949746112, 3.06170289917278022764448738124, 3.69318461632874718489411016173, 4.65192489990083232930021520477, 5.80728484600472618083138905844, 6.28820476187032781405047901703, 7.16359945136244566953818988247, 8.279171749074187156436443119120, 9.395107387571480495005831997334, 10.28537004483072026962761949412