Properties

Label 1120.433
Modulus $1120$
Conductor $280$
Order $4$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1120, base_ring=CyclotomicField(4)) M = H._module chi = DirichletCharacter(H, M([0,2,3,2]))
 
Copy content pari:[g,chi] = znchar(Mod(433,1120))
 

Basic properties

Modulus: \(1120\)
Conductor: \(280\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(4\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{280}(13,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 1120.w

\(\chi_{1120}(433,\cdot)\) \(\chi_{1120}(657,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\mathbb{Q}(i)\)
Fixed field: 4.4.392000.1

Values on generators

\((351,421,897,801)\) → \((1,-1,-i,-1)\)

First values

\(a\) \(-1\)\(1\)\(3\)\(9\)\(11\)\(13\)\(17\)\(19\)\(23\)\(27\)\(29\)\(31\)
\( \chi_{ 1120 }(433, a) \) \(1\)\(1\)\(i\)\(-1\)\(-1\)\(i\)\(i\)\(-1\)\(i\)\(-i\)\(1\)\(-1\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 1120 }(433,a) \;\) at \(\;a = \) e.g. 2