L(s) = 1 | + (0.192 + 1.40i)2-s + (−1.03 + 1.03i)3-s + (−1.92 + 0.540i)4-s + (−1.68 + 1.68i)5-s + (−1.65 − 1.25i)6-s + (1.38 − 2.25i)7-s + (−1.12 − 2.59i)8-s + 0.851i·9-s + (−2.68 − 2.03i)10-s + (−2 + 2i)11-s + (1.43 − 2.55i)12-s + (4.80 + 4.80i)13-s + (3.42 + 1.50i)14-s − 3.49i·15-s + (3.41 − 2.08i)16-s + 1.13i·17-s + ⋯ |
L(s) = 1 | + (0.136 + 0.990i)2-s + (−0.598 + 0.598i)3-s + (−0.962 + 0.270i)4-s + (−0.754 + 0.754i)5-s + (−0.674 − 0.511i)6-s + (0.523 − 0.851i)7-s + (−0.398 − 0.917i)8-s + 0.283i·9-s + (−0.850 − 0.644i)10-s + (−0.603 + 0.603i)11-s + (0.414 − 0.737i)12-s + (1.33 + 1.33i)13-s + (0.915 + 0.402i)14-s − 0.902i·15-s + (0.854 − 0.520i)16-s + 0.275i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 112 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.922 - 0.386i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 112 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.922 - 0.386i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.146752 + 0.729696i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.146752 + 0.729696i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.192 - 1.40i)T \) |
| 7 | \( 1 + (-1.38 + 2.25i)T \) |
good | 3 | \( 1 + (1.03 - 1.03i)T - 3iT^{2} \) |
| 5 | \( 1 + (1.68 - 1.68i)T - 5iT^{2} \) |
| 11 | \( 1 + (2 - 2i)T - 11iT^{2} \) |
| 13 | \( 1 + (-4.80 - 4.80i)T + 13iT^{2} \) |
| 17 | \( 1 - 1.13iT - 17T^{2} \) |
| 19 | \( 1 + (-1.21 + 1.21i)T - 19iT^{2} \) |
| 23 | \( 1 + 1.33T + 23T^{2} \) |
| 29 | \( 1 + (-5.26 + 5.26i)T - 29iT^{2} \) |
| 31 | \( 1 - 8.31T + 31T^{2} \) |
| 37 | \( 1 + (4.18 + 4.18i)T + 37iT^{2} \) |
| 41 | \( 1 + 1.63T + 41T^{2} \) |
| 43 | \( 1 + (1.33 - 1.33i)T - 43iT^{2} \) |
| 47 | \( 1 + 1.93T + 47T^{2} \) |
| 53 | \( 1 + (-6.34 - 6.34i)T + 53iT^{2} \) |
| 59 | \( 1 + (3.29 + 3.29i)T + 59iT^{2} \) |
| 61 | \( 1 + (2.04 + 2.04i)T + 61iT^{2} \) |
| 67 | \( 1 + (-0.107 - 0.107i)T + 67iT^{2} \) |
| 71 | \( 1 - 13.0T + 71T^{2} \) |
| 73 | \( 1 + 6.24T + 73T^{2} \) |
| 79 | \( 1 + 4.51iT - 79T^{2} \) |
| 83 | \( 1 + (9.71 - 9.71i)T - 83iT^{2} \) |
| 89 | \( 1 - 11.6T + 89T^{2} \) |
| 97 | \( 1 + 3.23iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.10572824020196919819208487086, −13.51540814058755438979682375222, −11.81827915467312053844047100489, −10.91166541185598078528150815423, −9.982993003406729962238897660024, −8.354313376755484064203154516895, −7.39742686368951670438440055432, −6.34290047298647589593017292692, −4.75514813811223899333045193066, −3.93927389434580663705477360702,
0.957600385120806555636265257852, 3.26942352993869024638115788817, 5.00284256337927263150859333553, 5.97645680441566660340276172263, 8.187774533534802220933254791929, 8.640419433526620364083215101381, 10.34733222764572731921952174640, 11.45008798007149215065669699947, 12.07918082459727220854390396380, 12.79911071454663915645029074691