Properties

Label 16-1056e8-1.1-c1e8-0-4
Degree $16$
Conductor $1.546\times 10^{24}$
Sign $1$
Analytic cond. $2.55580\times 10^{7}$
Root an. cond. $2.90382$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s + 2·5-s + 8·7-s + 9-s + 2·13-s − 4·15-s − 10·17-s − 6·19-s − 16·21-s − 8·23-s + 5·25-s − 20·29-s + 10·31-s + 16·35-s + 26·37-s − 4·39-s + 6·41-s + 12·43-s + 2·45-s − 12·47-s + 49·49-s + 20·51-s + 14·53-s + 12·57-s + 12·59-s − 14·61-s + 8·63-s + ⋯
L(s)  = 1  − 1.15·3-s + 0.894·5-s + 3.02·7-s + 1/3·9-s + 0.554·13-s − 1.03·15-s − 2.42·17-s − 1.37·19-s − 3.49·21-s − 1.66·23-s + 25-s − 3.71·29-s + 1.79·31-s + 2.70·35-s + 4.27·37-s − 0.640·39-s + 0.937·41-s + 1.82·43-s + 0.298·45-s − 1.75·47-s + 7·49-s + 2.80·51-s + 1.92·53-s + 1.58·57-s + 1.56·59-s − 1.79·61-s + 1.00·63-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{40} \cdot 3^{8} \cdot 11^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{40} \cdot 3^{8} \cdot 11^{8}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(16\)
Conductor: \(2^{40} \cdot 3^{8} \cdot 11^{8}\)
Sign: $1$
Analytic conductor: \(2.55580\times 10^{7}\)
Root analytic conductor: \(2.90382\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((16,\ 2^{40} \cdot 3^{8} \cdot 11^{8} ,\ ( \ : [1/2]^{8} ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(7.799722894\)
\(L(\frac12)\) \(\approx\) \(7.799722894\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( ( 1 + T + T^{2} + T^{3} + T^{4} )^{2} \)
11 \( 1 + 31 T^{2} + 41 p T^{4} + 31 p^{2} T^{6} + p^{4} T^{8} \)
good5 \( 1 - 2 T - T^{2} + 2 T^{3} + 11 T^{4} - 22 p T^{5} + 37 p T^{6} - 2 p^{2} T^{7} + 8 p^{2} T^{8} - 2 p^{3} T^{9} + 37 p^{3} T^{10} - 22 p^{4} T^{11} + 11 p^{4} T^{12} + 2 p^{5} T^{13} - p^{6} T^{14} - 2 p^{7} T^{15} + p^{8} T^{16} \)
7 \( 1 - 8 T + 15 T^{2} + 8 p T^{3} - 254 T^{4} - 52 T^{5} + 1571 T^{6} + 250 T^{7} - 11581 T^{8} + 250 p T^{9} + 1571 p^{2} T^{10} - 52 p^{3} T^{11} - 254 p^{4} T^{12} + 8 p^{6} T^{13} + 15 p^{6} T^{14} - 8 p^{7} T^{15} + p^{8} T^{16} \)
13 \( ( 1 - T - 12 T^{2} + 25 T^{3} + 131 T^{4} + 25 p T^{5} - 12 p^{2} T^{6} - p^{3} T^{7} + p^{4} T^{8} )^{2} \)
17 \( 1 + 10 T + 10 T^{2} - 270 T^{3} - 1289 T^{4} - 350 T^{5} + 12280 T^{6} + 34840 T^{7} + 63921 T^{8} + 34840 p T^{9} + 12280 p^{2} T^{10} - 350 p^{3} T^{11} - 1289 p^{4} T^{12} - 270 p^{5} T^{13} + 10 p^{6} T^{14} + 10 p^{7} T^{15} + p^{8} T^{16} \)
19 \( 1 + 6 T - 12 T^{2} - 86 T^{3} + 573 T^{4} + 1206 T^{5} - 18160 T^{6} - 26260 T^{7} + 242161 T^{8} - 26260 p T^{9} - 18160 p^{2} T^{10} + 1206 p^{3} T^{11} + 573 p^{4} T^{12} - 86 p^{5} T^{13} - 12 p^{6} T^{14} + 6 p^{7} T^{15} + p^{8} T^{16} \)
23 \( ( 1 + 4 T + 80 T^{2} + 224 T^{3} + 2581 T^{4} + 224 p T^{5} + 80 p^{2} T^{6} + 4 p^{3} T^{7} + p^{4} T^{8} )^{2} \)
29 \( 1 + 20 T + 166 T^{2} + 860 T^{3} + 4755 T^{4} + 33780 T^{5} + 197064 T^{6} + 761200 T^{7} + 2853189 T^{8} + 761200 p T^{9} + 197064 p^{2} T^{10} + 33780 p^{3} T^{11} + 4755 p^{4} T^{12} + 860 p^{5} T^{13} + 166 p^{6} T^{14} + 20 p^{7} T^{15} + p^{8} T^{16} \)
31 \( 1 - 10 T + 4 T^{2} + 330 T^{3} - 1755 T^{4} + 710 T^{5} + 38296 T^{6} - 49900 T^{7} - 975191 T^{8} - 49900 p T^{9} + 38296 p^{2} T^{10} + 710 p^{3} T^{11} - 1755 p^{4} T^{12} + 330 p^{5} T^{13} + 4 p^{6} T^{14} - 10 p^{7} T^{15} + p^{8} T^{16} \)
37 \( 1 - 26 T + 269 T^{2} - 1294 T^{3} + 1484 T^{4} + 21636 T^{5} - 257957 T^{6} + 2267268 T^{7} - 15721817 T^{8} + 2267268 p T^{9} - 257957 p^{2} T^{10} + 21636 p^{3} T^{11} + 1484 p^{4} T^{12} - 1294 p^{5} T^{13} + 269 p^{6} T^{14} - 26 p^{7} T^{15} + p^{8} T^{16} \)
41 \( 1 - 6 T - 31 T^{2} + 242 T^{3} - 160 T^{4} - 7076 T^{5} + 71495 T^{6} + 240030 T^{7} - 5091109 T^{8} + 240030 p T^{9} + 71495 p^{2} T^{10} - 7076 p^{3} T^{11} - 160 p^{4} T^{12} + 242 p^{5} T^{13} - 31 p^{6} T^{14} - 6 p^{7} T^{15} + p^{8} T^{16} \)
43 \( ( 1 - 6 T + 100 T^{2} - 716 T^{3} + 4901 T^{4} - 716 p T^{5} + 100 p^{2} T^{6} - 6 p^{3} T^{7} + p^{4} T^{8} )^{2} \)
47 \( 1 + 12 T + 99 T^{2} + 932 T^{3} + 7773 T^{4} + 57292 T^{5} + 474221 T^{6} + 3986676 T^{7} + 27952628 T^{8} + 3986676 p T^{9} + 474221 p^{2} T^{10} + 57292 p^{3} T^{11} + 7773 p^{4} T^{12} + 932 p^{5} T^{13} + 99 p^{6} T^{14} + 12 p^{7} T^{15} + p^{8} T^{16} \)
53 \( 1 - 14 T + 90 T^{2} - 718 T^{3} + 6511 T^{4} - 76886 T^{5} + 691704 T^{6} - 4321800 T^{7} + 29508369 T^{8} - 4321800 p T^{9} + 691704 p^{2} T^{10} - 76886 p^{3} T^{11} + 6511 p^{4} T^{12} - 718 p^{5} T^{13} + 90 p^{6} T^{14} - 14 p^{7} T^{15} + p^{8} T^{16} \)
59 \( 1 - 12 T + 16 T^{2} + 4 p T^{3} + 1505 T^{4} - 15612 T^{5} - 121620 T^{6} + 2376120 T^{7} - 19015459 T^{8} + 2376120 p T^{9} - 121620 p^{2} T^{10} - 15612 p^{3} T^{11} + 1505 p^{4} T^{12} + 4 p^{6} T^{13} + 16 p^{6} T^{14} - 12 p^{7} T^{15} + p^{8} T^{16} \)
61 \( 1 + 14 T - 21 T^{2} - 1008 T^{3} - 3545 T^{4} + 26684 T^{5} + 497385 T^{6} + 343070 T^{7} - 30611544 T^{8} + 343070 p T^{9} + 497385 p^{2} T^{10} + 26684 p^{3} T^{11} - 3545 p^{4} T^{12} - 1008 p^{5} T^{13} - 21 p^{6} T^{14} + 14 p^{7} T^{15} + p^{8} T^{16} \)
67 \( ( 1 + 6 T + 219 T^{2} + 882 T^{3} + 19959 T^{4} + 882 p T^{5} + 219 p^{2} T^{6} + 6 p^{3} T^{7} + p^{4} T^{8} )^{2} \)
71 \( 1 - 24 T + 149 T^{2} + 128 T^{3} + 3365 T^{4} - 33344 T^{5} - 701605 T^{6} - 4200 p T^{7} + 87081956 T^{8} - 4200 p^{2} T^{9} - 701605 p^{2} T^{10} - 33344 p^{3} T^{11} + 3365 p^{4} T^{12} + 128 p^{5} T^{13} + 149 p^{6} T^{14} - 24 p^{7} T^{15} + p^{8} T^{16} \)
73 \( 1 + 32 T + 418 T^{2} + 3580 T^{3} + 33755 T^{4} + 272368 T^{5} + 1116824 T^{6} + 4568960 T^{7} + 52288789 T^{8} + 4568960 p T^{9} + 1116824 p^{2} T^{10} + 272368 p^{3} T^{11} + 33755 p^{4} T^{12} + 3580 p^{5} T^{13} + 418 p^{6} T^{14} + 32 p^{7} T^{15} + p^{8} T^{16} \)
79 \( 1 + 2 T - 71 T^{2} - 434 T^{3} + 6062 T^{4} + 51932 T^{5} - 204547 T^{6} - 781034 T^{7} + 32478331 T^{8} - 781034 p T^{9} - 204547 p^{2} T^{10} + 51932 p^{3} T^{11} + 6062 p^{4} T^{12} - 434 p^{5} T^{13} - 71 p^{6} T^{14} + 2 p^{7} T^{15} + p^{8} T^{16} \)
83 \( 1 - 12 T + 17 T^{2} - 1036 T^{3} + 20066 T^{4} - 122792 T^{5} + 1112705 T^{6} - 15564648 T^{7} + 148848239 T^{8} - 15564648 p T^{9} + 1112705 p^{2} T^{10} - 122792 p^{3} T^{11} + 20066 p^{4} T^{12} - 1036 p^{5} T^{13} + 17 p^{6} T^{14} - 12 p^{7} T^{15} + p^{8} T^{16} \)
89 \( ( 1 + 18 T + 262 T^{2} + 1656 T^{3} + 16839 T^{4} + 1656 p T^{5} + 262 p^{2} T^{6} + 18 p^{3} T^{7} + p^{4} T^{8} )^{2} \)
97 \( 1 - 30 T + 215 T^{2} + 2140 T^{3} - 27569 T^{4} - 285160 T^{5} + 5186565 T^{6} + 16773930 T^{7} - 699217624 T^{8} + 16773930 p T^{9} + 5186565 p^{2} T^{10} - 285160 p^{3} T^{11} - 27569 p^{4} T^{12} + 2140 p^{5} T^{13} + 215 p^{6} T^{14} - 30 p^{7} T^{15} + p^{8} T^{16} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{16} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−4.35392248827332599997513591852, −4.26822628316406260351364750749, −4.03710396825777587494687581863, −3.92696197197316548701225875632, −3.90003137528848642471622211449, −3.84990212037490553888075563635, −3.53456428675265643804642106895, −3.20555260902212454890285801749, −3.14111110976705045010063148626, −2.99449888683246874132118539611, −2.76934255034691068012547728104, −2.53235545121809821908856887679, −2.50922601652731831814350415026, −2.47403146385608313338653953951, −2.16585985652264021146585026708, −1.96571569627372972700757676444, −1.93817366150440658072264726770, −1.80512844153641798411690453084, −1.79386222813391335310605784275, −1.55597260703134258136972974784, −1.20062957936781925095160120098, −0.904813459292764989817490559228, −0.75835657283746663702654077482, −0.61157619547160499794272630144, −0.35446452375689316049136812544, 0.35446452375689316049136812544, 0.61157619547160499794272630144, 0.75835657283746663702654077482, 0.904813459292764989817490559228, 1.20062957936781925095160120098, 1.55597260703134258136972974784, 1.79386222813391335310605784275, 1.80512844153641798411690453084, 1.93817366150440658072264726770, 1.96571569627372972700757676444, 2.16585985652264021146585026708, 2.47403146385608313338653953951, 2.50922601652731831814350415026, 2.53235545121809821908856887679, 2.76934255034691068012547728104, 2.99449888683246874132118539611, 3.14111110976705045010063148626, 3.20555260902212454890285801749, 3.53456428675265643804642106895, 3.84990212037490553888075563635, 3.90003137528848642471622211449, 3.92696197197316548701225875632, 4.03710396825777587494687581863, 4.26822628316406260351364750749, 4.35392248827332599997513591852

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.