L(s) = 1 | + 2-s − 2·4-s − 3·5-s − 3·7-s − 3·8-s − 3·10-s + 5·11-s − 2·13-s − 3·14-s + 16-s + 4·17-s − 6·19-s + 6·20-s + 5·22-s − 5·23-s − 2·25-s − 2·26-s + 6·28-s − 5·29-s + 31-s + 2·32-s + 4·34-s + 9·35-s − 37-s − 6·38-s + 9·40-s − 11·41-s + ⋯ |
L(s) = 1 | + 0.707·2-s − 4-s − 1.34·5-s − 1.13·7-s − 1.06·8-s − 0.948·10-s + 1.50·11-s − 0.554·13-s − 0.801·14-s + 1/4·16-s + 0.970·17-s − 1.37·19-s + 1.34·20-s + 1.06·22-s − 1.04·23-s − 2/5·25-s − 0.392·26-s + 1.13·28-s − 0.928·29-s + 0.179·31-s + 0.353·32-s + 0.685·34-s + 1.52·35-s − 0.164·37-s − 0.973·38-s + 1.42·40-s − 1.71·41-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1108809 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1108809 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.629505132742867985506190112397, −9.402358213255762819935690877782, −8.722203097877484885906989865646, −8.606729185751585374711267327116, −8.078314143771985418444226321739, −7.67745771191599407757193972290, −7.12232866859390497374116521227, −6.69161541022450792844172287419, −6.26297154661453989759920105921, −5.90902952612023712179843526101, −5.17206257302330982387273116887, −4.89851888944472995285731917910, −4.07120430693461348223116487038, −4.04445557174768138416560211291, −3.47322911231444295352018567693, −3.43002708804291179789827397212, −2.31435365180976146227990411929, −1.47145655271924622801729542746, 0, 0,
1.47145655271924622801729542746, 2.31435365180976146227990411929, 3.43002708804291179789827397212, 3.47322911231444295352018567693, 4.04445557174768138416560211291, 4.07120430693461348223116487038, 4.89851888944472995285731917910, 5.17206257302330982387273116887, 5.90902952612023712179843526101, 6.26297154661453989759920105921, 6.69161541022450792844172287419, 7.12232866859390497374116521227, 7.67745771191599407757193972290, 8.078314143771985418444226321739, 8.606729185751585374711267327116, 8.722203097877484885906989865646, 9.402358213255762819935690877782, 9.629505132742867985506190112397