L(s) = 1 | + (1.34 + 0.776i)2-s + (−0.866 + 0.5i)3-s + (0.204 + 0.355i)4-s + (1.88 + 1.19i)5-s − 1.55·6-s + (−0.478 + 2.60i)7-s − 2.46i·8-s + (0.499 − 0.866i)9-s + (1.61 + 3.07i)10-s + (−2.21 − 3.83i)11-s + (−0.355 − 0.204i)12-s − 1.73i·13-s + (−2.66 + 3.12i)14-s + (−2.23 − 0.0917i)15-s + (2.32 − 4.02i)16-s + (−2.36 + 1.36i)17-s + ⋯ |
L(s) = 1 | + (0.950 + 0.548i)2-s + (−0.499 + 0.288i)3-s + (0.102 + 0.177i)4-s + (0.844 + 0.535i)5-s − 0.633·6-s + (−0.180 + 0.983i)7-s − 0.872i·8-s + (0.166 − 0.288i)9-s + (0.509 + 0.972i)10-s + (−0.667 − 1.15i)11-s + (−0.102 − 0.0591i)12-s − 0.480i·13-s + (−0.711 + 0.835i)14-s + (−0.576 − 0.0236i)15-s + (0.581 − 1.00i)16-s + (−0.573 + 0.331i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 105 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.631 - 0.775i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 105 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.631 - 0.775i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.28000 + 0.608641i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.28000 + 0.608641i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (0.866 - 0.5i)T \) |
| 5 | \( 1 + (-1.88 - 1.19i)T \) |
| 7 | \( 1 + (0.478 - 2.60i)T \) |
good | 2 | \( 1 + (-1.34 - 0.776i)T + (1 + 1.73i)T^{2} \) |
| 11 | \( 1 + (2.21 + 3.83i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + 1.73iT - 13T^{2} \) |
| 17 | \( 1 + (2.36 - 1.36i)T + (8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (0.152 - 0.264i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (6.08 + 3.51i)T + (11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 - 7.79T + 29T^{2} \) |
| 31 | \( 1 + (-2.64 - 4.57i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (-3.18 - 1.83i)T + (18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + 6.71T + 41T^{2} \) |
| 43 | \( 1 - 9.71iT - 43T^{2} \) |
| 47 | \( 1 + (1.57 + 0.908i)T + (23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-1.48 + 0.857i)T + (26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (0.571 + 0.989i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (4.77 - 8.27i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (7.26 - 4.19i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 10.2T + 71T^{2} \) |
| 73 | \( 1 + (-11.1 + 6.41i)T + (36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (-3.35 + 5.81i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + 5.09iT - 83T^{2} \) |
| 89 | \( 1 + (-2.03 + 3.52i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + 2.87iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.93390984843127097183693833274, −13.13066646825401737962636695500, −12.09140080558479808507886285950, −10.68206833691557536474888581137, −9.864495511542898615517966328942, −8.429246120178855468715711404730, −6.42297906415929085457156988520, −5.95956921456551317837164483426, −4.89535404242230675659989411303, −3.01438337874772800765663162593,
2.13593747941654210264596408384, 4.24566316324407391329028298964, 5.15481733353187785008500863390, 6.57949386212705154386916514929, 7.987015455236908921999439068147, 9.669758107271854260171177213114, 10.61133134523084751239454646881, 11.89127377565386976127065803425, 12.65556594805957045076094294084, 13.59079004215671317901868896040