Properties

Label 105.79
Modulus $105$
Conductor $35$
Order $6$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Learn more about

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter
 
sage: H = DirichletGroup(105, base_ring=CyclotomicField(6))
 
sage: M = H._module
 
sage: chi = DirichletCharacter(H, M([0,3,2]))
 
pari: [g,chi] = znchar(Mod(79,105))
 

Basic properties

Modulus: \(105\)
Conductor: \(35\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(6\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{35}(9,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 105.q

\(\chi_{105}(4,\cdot)\) \(\chi_{105}(79,\cdot)\)

sage: chi.galois_orbit()
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\sqrt{-3}) \)
Fixed field: 6.6.300125.1

Values on generators

\((71,22,31)\) → \((1,-1,e\left(\frac{1}{3}\right))\)

Values

\(-1\)\(1\)\(2\)\(4\)\(8\)\(11\)\(13\)\(16\)\(17\)\(19\)\(22\)\(23\)
\(1\)\(1\)\(e\left(\frac{1}{6}\right)\)\(e\left(\frac{1}{3}\right)\)\(-1\)\(e\left(\frac{1}{3}\right)\)\(-1\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{5}{6}\right)\)\(e\left(\frac{2}{3}\right)\)\(-1\)\(e\left(\frac{1}{6}\right)\)
value at e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 105 }(79,·) )\;\) at \(\;a = \) e.g. 2
\(\displaystyle \tau_{2}(\chi_{105}(79,\cdot)) = \sum_{r\in \Z/105\Z} \chi_{105}(79,r) e\left(\frac{2r}{105}\right) = -0.3746818155+5.90420304i \)

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 105 }(79,·),\chi_{ 105 }(n,·)) \;\) for \( \; n = \) e.g. 1
\( \displaystyle J(\chi_{105}(79,\cdot),\chi_{105}(1,\cdot)) = \sum_{r\in \Z/105\Z} \chi_{105}(79,r) \chi_{105}(1,1-r) = 1 \)

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 105 }(79,·)) \;\) at \(\; a,b = \) e.g. 1,2
\( \displaystyle K(1,2,\chi_{105}(79,·)) = \sum_{r \in \Z/105\Z} \chi_{105}(79,r) e\left(\frac{1 r + 2 r^{-1}}{105}\right) = 0.0 \)