L(s) = 1 | − 8.59·3-s − 5i·5-s − 19.4i·7-s + 46.8·9-s − 20.0i·11-s + (−46.8 − 0.655i)13-s + 42.9i·15-s − 89.4·17-s − 11.7i·19-s + 167. i·21-s − 157.·23-s − 25·25-s − 170.·27-s + 116.·29-s − 245. i·31-s + ⋯ |
L(s) = 1 | − 1.65·3-s − 0.447i·5-s − 1.05i·7-s + 1.73·9-s − 0.550i·11-s + (−0.999 − 0.0139i)13-s + 0.739i·15-s − 1.27·17-s − 0.142i·19-s + 1.73i·21-s − 1.42·23-s − 0.200·25-s − 1.21·27-s + 0.743·29-s − 1.42i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1040 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0139 - 0.999i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1040 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.0139 - 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.1659620220\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.1659620220\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + 5iT \) |
| 13 | \( 1 + (46.8 + 0.655i)T \) |
good | 3 | \( 1 + 8.59T + 27T^{2} \) |
| 7 | \( 1 + 19.4iT - 343T^{2} \) |
| 11 | \( 1 + 20.0iT - 1.33e3T^{2} \) |
| 17 | \( 1 + 89.4T + 4.91e3T^{2} \) |
| 19 | \( 1 + 11.7iT - 6.85e3T^{2} \) |
| 23 | \( 1 + 157.T + 1.21e4T^{2} \) |
| 29 | \( 1 - 116.T + 2.43e4T^{2} \) |
| 31 | \( 1 + 245. iT - 2.97e4T^{2} \) |
| 37 | \( 1 + 213. iT - 5.06e4T^{2} \) |
| 41 | \( 1 + 442. iT - 6.89e4T^{2} \) |
| 43 | \( 1 + 184.T + 7.95e4T^{2} \) |
| 47 | \( 1 + 247. iT - 1.03e5T^{2} \) |
| 53 | \( 1 - 14.9T + 1.48e5T^{2} \) |
| 59 | \( 1 + 416. iT - 2.05e5T^{2} \) |
| 61 | \( 1 + 898.T + 2.26e5T^{2} \) |
| 67 | \( 1 - 847. iT - 3.00e5T^{2} \) |
| 71 | \( 1 + 512. iT - 3.57e5T^{2} \) |
| 73 | \( 1 + 533. iT - 3.89e5T^{2} \) |
| 79 | \( 1 - 90.0T + 4.93e5T^{2} \) |
| 83 | \( 1 - 1.09e3iT - 5.71e5T^{2} \) |
| 89 | \( 1 - 117. iT - 7.04e5T^{2} \) |
| 97 | \( 1 + 895. iT - 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.068472839338840378150324927980, −7.86551034289197242061288070150, −7.06105545730740342887152377366, −6.29200691781595268151200372512, −5.48300216323861555245113842855, −4.58089387579395447126152875606, −3.96935153156182183910337896064, −2.06062971849731524508591292163, −0.58248411240011044656906205722, −0.090975624011096562780655026149,
1.65697525183573201211801221260, 2.79037025209922008540562116363, 4.50344006590354113436896545224, 4.97676277619462261263668994987, 6.07793029603192012593553586867, 6.49632600359812025565907181847, 7.40558096198995508422007611526, 8.523739458842951169650019948504, 9.646433851378708073036296300405, 10.24820462028198914504433303677