Properties

Label 2-1040-13.12-c3-0-74
Degree $2$
Conductor $1040$
Sign $0.0139 - 0.999i$
Analytic cond. $61.3619$
Root an. cond. $7.83338$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 8.59·3-s − 5i·5-s − 19.4i·7-s + 46.8·9-s − 20.0i·11-s + (−46.8 − 0.655i)13-s + 42.9i·15-s − 89.4·17-s − 11.7i·19-s + 167. i·21-s − 157.·23-s − 25·25-s − 170.·27-s + 116.·29-s − 245. i·31-s + ⋯
L(s)  = 1  − 1.65·3-s − 0.447i·5-s − 1.05i·7-s + 1.73·9-s − 0.550i·11-s + (−0.999 − 0.0139i)13-s + 0.739i·15-s − 1.27·17-s − 0.142i·19-s + 1.73i·21-s − 1.42·23-s − 0.200·25-s − 1.21·27-s + 0.743·29-s − 1.42i·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1040 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0139 - 0.999i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1040 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.0139 - 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1040\)    =    \(2^{4} \cdot 5 \cdot 13\)
Sign: $0.0139 - 0.999i$
Analytic conductor: \(61.3619\)
Root analytic conductor: \(7.83338\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{1040} (961, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1040,\ (\ :3/2),\ 0.0139 - 0.999i)\)

Particular Values

\(L(2)\) \(\approx\) \(0.1659620220\)
\(L(\frac12)\) \(\approx\) \(0.1659620220\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 + 5iT \)
13 \( 1 + (46.8 + 0.655i)T \)
good3 \( 1 + 8.59T + 27T^{2} \)
7 \( 1 + 19.4iT - 343T^{2} \)
11 \( 1 + 20.0iT - 1.33e3T^{2} \)
17 \( 1 + 89.4T + 4.91e3T^{2} \)
19 \( 1 + 11.7iT - 6.85e3T^{2} \)
23 \( 1 + 157.T + 1.21e4T^{2} \)
29 \( 1 - 116.T + 2.43e4T^{2} \)
31 \( 1 + 245. iT - 2.97e4T^{2} \)
37 \( 1 + 213. iT - 5.06e4T^{2} \)
41 \( 1 + 442. iT - 6.89e4T^{2} \)
43 \( 1 + 184.T + 7.95e4T^{2} \)
47 \( 1 + 247. iT - 1.03e5T^{2} \)
53 \( 1 - 14.9T + 1.48e5T^{2} \)
59 \( 1 + 416. iT - 2.05e5T^{2} \)
61 \( 1 + 898.T + 2.26e5T^{2} \)
67 \( 1 - 847. iT - 3.00e5T^{2} \)
71 \( 1 + 512. iT - 3.57e5T^{2} \)
73 \( 1 + 533. iT - 3.89e5T^{2} \)
79 \( 1 - 90.0T + 4.93e5T^{2} \)
83 \( 1 - 1.09e3iT - 5.71e5T^{2} \)
89 \( 1 - 117. iT - 7.04e5T^{2} \)
97 \( 1 + 895. iT - 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.068472839338840378150324927980, −7.86551034289197242061288070150, −7.06105545730740342887152377366, −6.29200691781595268151200372512, −5.48300216323861555245113842855, −4.58089387579395447126152875606, −3.96935153156182183910337896064, −2.06062971849731524508591292163, −0.58248411240011044656906205722, −0.090975624011096562780655026149, 1.65697525183573201211801221260, 2.79037025209922008540562116363, 4.50344006590354113436896545224, 4.97676277619462261263668994987, 6.07793029603192012593553586867, 6.49632600359812025565907181847, 7.40558096198995508422007611526, 8.523739458842951169650019948504, 9.646433851378708073036296300405, 10.24820462028198914504433303677

Graph of the $Z$-function along the critical line