Properties

Label 2-104-1.1-c9-0-9
Degree $2$
Conductor $104$
Sign $1$
Analytic cond. $53.5637$
Root an. cond. $7.31872$
Motivic weight $9$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 266.·3-s − 2.71e3·5-s − 3.41e3·7-s + 5.14e4·9-s − 2.56e3·11-s + 2.85e4·13-s − 7.24e5·15-s − 8.38e4·17-s + 5.90e5·19-s − 9.09e5·21-s + 1.43e6·23-s + 5.42e6·25-s + 8.46e6·27-s − 3.49e6·29-s + 6.50e6·31-s − 6.82e5·33-s + 9.26e6·35-s − 8.53e5·37-s + 7.61e6·39-s + 4.07e6·41-s + 4.43e7·43-s − 1.39e8·45-s + 1.74e6·47-s − 2.87e7·49-s − 2.23e7·51-s + 9.92e7·53-s + 6.95e6·55-s + ⋯
L(s)  = 1  + 1.90·3-s − 1.94·5-s − 0.536·7-s + 2.61·9-s − 0.0527·11-s + 0.277·13-s − 3.69·15-s − 0.243·17-s + 1.03·19-s − 1.02·21-s + 1.07·23-s + 2.77·25-s + 3.06·27-s − 0.917·29-s + 1.26·31-s − 0.100·33-s + 1.04·35-s − 0.0748·37-s + 0.527·39-s + 0.225·41-s + 1.97·43-s − 5.07·45-s + 0.0522·47-s − 0.711·49-s − 0.462·51-s + 1.72·53-s + 0.102·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 104 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 104 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(104\)    =    \(2^{3} \cdot 13\)
Sign: $1$
Analytic conductor: \(53.5637\)
Root analytic conductor: \(7.31872\)
Motivic weight: \(9\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 104,\ (\ :9/2),\ 1)\)

Particular Values

\(L(5)\) \(\approx\) \(3.013446936\)
\(L(\frac12)\) \(\approx\) \(3.013446936\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
13 \( 1 - 2.85e4T \)
good3 \( 1 - 266.T + 1.96e4T^{2} \)
5 \( 1 + 2.71e3T + 1.95e6T^{2} \)
7 \( 1 + 3.41e3T + 4.03e7T^{2} \)
11 \( 1 + 2.56e3T + 2.35e9T^{2} \)
17 \( 1 + 8.38e4T + 1.18e11T^{2} \)
19 \( 1 - 5.90e5T + 3.22e11T^{2} \)
23 \( 1 - 1.43e6T + 1.80e12T^{2} \)
29 \( 1 + 3.49e6T + 1.45e13T^{2} \)
31 \( 1 - 6.50e6T + 2.64e13T^{2} \)
37 \( 1 + 8.53e5T + 1.29e14T^{2} \)
41 \( 1 - 4.07e6T + 3.27e14T^{2} \)
43 \( 1 - 4.43e7T + 5.02e14T^{2} \)
47 \( 1 - 1.74e6T + 1.11e15T^{2} \)
53 \( 1 - 9.92e7T + 3.29e15T^{2} \)
59 \( 1 + 1.05e8T + 8.66e15T^{2} \)
61 \( 1 + 1.10e8T + 1.16e16T^{2} \)
67 \( 1 - 1.77e8T + 2.72e16T^{2} \)
71 \( 1 - 1.90e7T + 4.58e16T^{2} \)
73 \( 1 + 1.41e8T + 5.88e16T^{2} \)
79 \( 1 - 8.73e7T + 1.19e17T^{2} \)
83 \( 1 - 6.45e8T + 1.86e17T^{2} \)
89 \( 1 + 1.02e9T + 3.50e17T^{2} \)
97 \( 1 + 6.54e8T + 7.60e17T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.20178430674528981254739421948, −10.90905643576968992045747987119, −9.458371478038318469881642309597, −8.606022549183385588627923851217, −7.71515212998967010675678811036, −7.06823089953085493428743550760, −4.44675257628618225817203061338, −3.54040754129170529729150074303, −2.81040613437810565323173506599, −0.902225964047441609316986844175, 0.902225964047441609316986844175, 2.81040613437810565323173506599, 3.54040754129170529729150074303, 4.44675257628618225817203061338, 7.06823089953085493428743550760, 7.71515212998967010675678811036, 8.606022549183385588627923851217, 9.458371478038318469881642309597, 10.90905643576968992045747987119, 12.20178430674528981254739421948

Graph of the $Z$-function along the critical line