Properties

Label 2-104-1.1-c9-0-13
Degree $2$
Conductor $104$
Sign $1$
Analytic cond. $53.5637$
Root an. cond. $7.31872$
Motivic weight $9$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 127.·3-s + 393.·5-s + 6.60e3·7-s − 3.54e3·9-s + 5.50e4·11-s + 2.85e4·13-s + 4.99e4·15-s − 2.29e5·17-s + 3.70e5·19-s + 8.38e5·21-s + 1.83e6·23-s − 1.79e6·25-s − 2.95e6·27-s + 1.20e6·29-s + 5.78e6·31-s + 6.99e6·33-s + 2.59e6·35-s − 8.39e5·37-s + 3.62e6·39-s + 2.52e6·41-s + 1.28e6·43-s − 1.39e6·45-s + 1.25e7·47-s + 3.22e6·49-s − 2.91e7·51-s − 9.21e7·53-s + 2.16e7·55-s + ⋯
L(s)  = 1  + 0.905·3-s + 0.281·5-s + 1.03·7-s − 0.179·9-s + 1.13·11-s + 0.277·13-s + 0.254·15-s − 0.665·17-s + 0.651·19-s + 0.941·21-s + 1.36·23-s − 0.920·25-s − 1.06·27-s + 0.316·29-s + 1.12·31-s + 1.02·33-s + 0.292·35-s − 0.0736·37-s + 0.251·39-s + 0.139·41-s + 0.0573·43-s − 0.0506·45-s + 0.374·47-s + 0.0798·49-s − 0.603·51-s − 1.60·53-s + 0.319·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 104 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 104 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(104\)    =    \(2^{3} \cdot 13\)
Sign: $1$
Analytic conductor: \(53.5637\)
Root analytic conductor: \(7.31872\)
Motivic weight: \(9\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 104,\ (\ :9/2),\ 1)\)

Particular Values

\(L(5)\) \(\approx\) \(3.761326800\)
\(L(\frac12)\) \(\approx\) \(3.761326800\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
13 \( 1 - 2.85e4T \)
good3 \( 1 - 127.T + 1.96e4T^{2} \)
5 \( 1 - 393.T + 1.95e6T^{2} \)
7 \( 1 - 6.60e3T + 4.03e7T^{2} \)
11 \( 1 - 5.50e4T + 2.35e9T^{2} \)
17 \( 1 + 2.29e5T + 1.18e11T^{2} \)
19 \( 1 - 3.70e5T + 3.22e11T^{2} \)
23 \( 1 - 1.83e6T + 1.80e12T^{2} \)
29 \( 1 - 1.20e6T + 1.45e13T^{2} \)
31 \( 1 - 5.78e6T + 2.64e13T^{2} \)
37 \( 1 + 8.39e5T + 1.29e14T^{2} \)
41 \( 1 - 2.52e6T + 3.27e14T^{2} \)
43 \( 1 - 1.28e6T + 5.02e14T^{2} \)
47 \( 1 - 1.25e7T + 1.11e15T^{2} \)
53 \( 1 + 9.21e7T + 3.29e15T^{2} \)
59 \( 1 - 1.25e8T + 8.66e15T^{2} \)
61 \( 1 - 1.80e7T + 1.16e16T^{2} \)
67 \( 1 - 2.32e8T + 2.72e16T^{2} \)
71 \( 1 - 1.13e8T + 4.58e16T^{2} \)
73 \( 1 + 5.38e7T + 5.88e16T^{2} \)
79 \( 1 - 5.37e8T + 1.19e17T^{2} \)
83 \( 1 - 1.78e8T + 1.86e17T^{2} \)
89 \( 1 - 9.93e8T + 3.50e17T^{2} \)
97 \( 1 - 1.12e9T + 7.60e17T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.82876039667493926921111406302, −11.07450769888314845728010512486, −9.547498482413209862968684473478, −8.742577487346069470133342727179, −7.82703135862238798829577836711, −6.45985313920166278791027778353, −4.98142703010444177016060098856, −3.65275010992777513860588477744, −2.30165984431038222347682306819, −1.12472266825986265436372713806, 1.12472266825986265436372713806, 2.30165984431038222347682306819, 3.65275010992777513860588477744, 4.98142703010444177016060098856, 6.45985313920166278791027778353, 7.82703135862238798829577836711, 8.742577487346069470133342727179, 9.547498482413209862968684473478, 11.07450769888314845728010512486, 11.82876039667493926921111406302

Graph of the $Z$-function along the critical line