Properties

Label 2-1035-1.1-c1-0-11
Degree $2$
Conductor $1035$
Sign $1$
Analytic cond. $8.26451$
Root an. cond. $2.87480$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 4-s + 5-s + 4·7-s + 3·8-s − 10-s − 4·11-s + 6·13-s − 4·14-s − 16-s + 2·17-s − 4·19-s − 20-s + 4·22-s + 23-s + 25-s − 6·26-s − 4·28-s + 10·29-s − 8·31-s − 5·32-s − 2·34-s + 4·35-s + 2·37-s + 4·38-s + 3·40-s − 2·41-s + ⋯
L(s)  = 1  − 0.707·2-s − 1/2·4-s + 0.447·5-s + 1.51·7-s + 1.06·8-s − 0.316·10-s − 1.20·11-s + 1.66·13-s − 1.06·14-s − 1/4·16-s + 0.485·17-s − 0.917·19-s − 0.223·20-s + 0.852·22-s + 0.208·23-s + 1/5·25-s − 1.17·26-s − 0.755·28-s + 1.85·29-s − 1.43·31-s − 0.883·32-s − 0.342·34-s + 0.676·35-s + 0.328·37-s + 0.648·38-s + 0.474·40-s − 0.312·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1035 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1035 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1035\)    =    \(3^{2} \cdot 5 \cdot 23\)
Sign: $1$
Analytic conductor: \(8.26451\)
Root analytic conductor: \(2.87480\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1035,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.255276682\)
\(L(\frac12)\) \(\approx\) \(1.255276682\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 \)
5 \( 1 - T \)
23 \( 1 - T \)
good2 \( 1 + T + p T^{2} \) 1.2.b
7 \( 1 - 4 T + p T^{2} \) 1.7.ae
11 \( 1 + 4 T + p T^{2} \) 1.11.e
13 \( 1 - 6 T + p T^{2} \) 1.13.ag
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 + 4 T + p T^{2} \) 1.19.e
29 \( 1 - 10 T + p T^{2} \) 1.29.ak
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 - 6 T + p T^{2} \) 1.61.ag
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 - 4 T + p T^{2} \) 1.71.ae
73 \( 1 - 10 T + p T^{2} \) 1.73.ak
79 \( 1 - 16 T + p T^{2} \) 1.79.aq
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 - 10 T + p T^{2} \) 1.89.ak
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.975144384021979445982805046052, −8.892039182635089349759381766028, −8.251418780433660953118526367100, −7.952706742196712345967880335530, −6.66130903538073920546111789283, −5.42325384197416427402124383567, −4.87713035050549148684233270206, −3.75783062785550806429257633674, −2.11230454009632946612683890961, −1.05140909064688750602011007914, 1.05140909064688750602011007914, 2.11230454009632946612683890961, 3.75783062785550806429257633674, 4.87713035050549148684233270206, 5.42325384197416427402124383567, 6.66130903538073920546111789283, 7.952706742196712345967880335530, 8.251418780433660953118526367100, 8.892039182635089349759381766028, 9.975144384021979445982805046052

Graph of the $Z$-function along the critical line