| L(s) = 1 | + 2·3-s − 5-s + 4·9-s + 6·11-s − 2·15-s − 4·23-s − 4·25-s + 5·27-s + 7·31-s + 12·33-s − 6·37-s − 4·45-s + 10·47-s − 6·49-s + 5·53-s − 6·55-s + 10·59-s + 23·67-s − 8·69-s + 17·71-s − 8·75-s + 4·81-s − 23·89-s + 14·93-s − 32·97-s + 24·99-s + 103-s + ⋯ |
| L(s) = 1 | + 1.15·3-s − 0.447·5-s + 4/3·9-s + 1.80·11-s − 0.516·15-s − 0.834·23-s − 4/5·25-s + 0.962·27-s + 1.25·31-s + 2.08·33-s − 0.986·37-s − 0.596·45-s + 1.45·47-s − 6/7·49-s + 0.686·53-s − 0.809·55-s + 1.30·59-s + 2.80·67-s − 0.963·69-s + 2.01·71-s − 0.923·75-s + 4/9·81-s − 2.43·89-s + 1.45·93-s − 3.24·97-s + 2.41·99-s + 0.0985·103-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2323200 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2323200 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(3.996321364\) |
| \(L(\frac12)\) |
\(\approx\) |
\(3.996321364\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.915061478363290872661758998005, −7.11786298087862154737252973066, −6.90521902753137301839242866842, −6.69065782753063263465820590021, −6.09987253028993883733146008575, −5.50975372268923174319813342746, −5.10515732632393841360693043960, −4.21640035302465590805986938535, −4.04290603700301575320151155966, −3.89925168053493854092457981887, −3.26509435062143808420539812403, −2.61457920457380198374674187575, −2.06050680887402525258822597405, −1.50902200900300362267203053971, −0.77880001681457936323746867989,
0.77880001681457936323746867989, 1.50902200900300362267203053971, 2.06050680887402525258822597405, 2.61457920457380198374674187575, 3.26509435062143808420539812403, 3.89925168053493854092457981887, 4.04290603700301575320151155966, 4.21640035302465590805986938535, 5.10515732632393841360693043960, 5.50975372268923174319813342746, 6.09987253028993883733146008575, 6.69065782753063263465820590021, 6.90521902753137301839242866842, 7.11786298087862154737252973066, 7.915061478363290872661758998005