Dirichlet series
| L(s) = 1 | − 2-s − 3-s + 4-s − 5-s + 6-s + 2·7-s − 3·8-s + 10-s − 3·11-s − 12-s − 4·13-s − 2·14-s + 15-s + 16-s + 4·17-s − 2·19-s − 20-s − 2·21-s + 3·22-s + 11·23-s + 3·24-s + 25-s + 4·26-s + 4·27-s + 2·28-s + 2·29-s − 30-s + ⋯ |
| L(s) = 1 | − 0.707·2-s − 0.577·3-s + 1/2·4-s − 0.447·5-s + 0.408·6-s + 0.755·7-s − 1.06·8-s + 0.316·10-s − 0.904·11-s − 0.288·12-s − 1.10·13-s − 0.534·14-s + 0.258·15-s + 1/4·16-s + 0.970·17-s − 0.458·19-s − 0.223·20-s − 0.436·21-s + 0.639·22-s + 2.29·23-s + 0.612·24-s + 1/5·25-s + 0.784·26-s + 0.769·27-s + 0.377·28-s + 0.371·29-s − 0.182·30-s + ⋯ |
Functional equation
\[\begin{aligned}\Lambda(s)=\mathstrut & 807 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 807 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Invariants
| Degree: | \(4\) |
| Conductor: | \(807\) = \(3 \cdot 269\) |
| Sign: | $1$ |
| Analytic conductor: | \(0.0514550\) |
| Root analytic conductor: | \(0.476274\) |
| Motivic weight: | \(1\) |
| Rational: | yes |
| Arithmetic: | yes |
| Character: | Trivial |
| Primitive: | yes |
| Self-dual: | yes |
| Analytic rank: | \(0\) |
| Selberg data: | \((4,\ 807,\ (\ :1/2, 1/2),\ 1)\) |
Particular Values
| \(L(1)\) | \(\approx\) | \(0.3050356332\) |
| \(L(\frac12)\) | \(\approx\) | \(0.3050356332\) |
| \(L(\frac{3}{2})\) | not available | |
| \(L(1)\) | not available |
Euler product
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $\Gal(F_p)$ | $F_p(T)$ | Isogeny Class over $\mathbf{F}_p$ | |
|---|---|---|---|---|
| bad | 3 | $C_1$$\times$$C_2$ | \( ( 1 - T )( 1 + 2 T + p T^{2} ) \) | |
| 269 | $C_1$$\times$$C_2$ | \( ( 1 - T )( 1 - 14 T + p T^{2} ) \) | ||
| good | 2 | $D_{4}$ | \( 1 + T + p T^{3} + p^{2} T^{4} \) | 2.2.b_a |
| 5 | $D_{4}$ | \( 1 + T + p T^{3} + p^{2} T^{4} \) | 2.5.b_a | |
| 7 | $D_{4}$ | \( 1 - 2 T - 2 T^{2} - 2 p T^{3} + p^{2} T^{4} \) | 2.7.ac_ac | |
| 11 | $C_2$$\times$$C_2$ | \( ( 1 - T + p T^{2} )( 1 + 4 T + p T^{2} ) \) | 2.11.d_s | |
| 13 | $C_2$ | \( ( 1 + 2 T + p T^{2} )^{2} \) | 2.13.e_be | |
| 17 | $C_4$ | \( 1 - 4 T + 6 T^{2} - 4 p T^{3} + p^{2} T^{4} \) | 2.17.ae_g | |
| 19 | $D_{4}$ | \( 1 + 2 T - 18 T^{2} + 2 p T^{3} + p^{2} T^{4} \) | 2.19.c_as | |
| 23 | $C_2$$\times$$C_2$ | \( ( 1 - 8 T + p T^{2} )( 1 - 3 T + p T^{2} ) \) | 2.23.al_cs | |
| 29 | $D_{4}$ | \( 1 - 2 T + 18 T^{2} - 2 p T^{3} + p^{2} T^{4} \) | 2.29.ac_s | |
| 31 | $D_{4}$ | \( 1 + 4 T - 2 T^{2} + 4 p T^{3} + p^{2} T^{4} \) | 2.31.e_ac | |
| 37 | $D_{4}$ | \( 1 + 7 T + 28 T^{2} + 7 p T^{3} + p^{2} T^{4} \) | 2.37.h_bc | |
| 41 | $D_{4}$ | \( 1 + 7 T + 72 T^{2} + 7 p T^{3} + p^{2} T^{4} \) | 2.41.h_cu | |
| 43 | $D_{4}$ | \( 1 - 7 T + 58 T^{2} - 7 p T^{3} + p^{2} T^{4} \) | 2.43.ah_cg | |
| 47 | $D_{4}$ | \( 1 + T - 2 T^{2} + p T^{3} + p^{2} T^{4} \) | 2.47.b_ac | |
| 53 | $D_{4}$ | \( 1 + 9 T + 64 T^{2} + 9 p T^{3} + p^{2} T^{4} \) | 2.53.j_cm | |
| 59 | $C_2$$\times$$C_2$ | \( ( 1 - 12 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) | 2.59.ai_cs | |
| 61 | $C_2$$\times$$C_2$ | \( ( 1 - 7 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) | 2.61.af_ee | |
| 67 | $D_{4}$ | \( 1 + 5 T + 66 T^{2} + 5 p T^{3} + p^{2} T^{4} \) | 2.67.f_co | |
| 71 | $D_{4}$ | \( 1 + 2 T - 34 T^{2} + 2 p T^{3} + p^{2} T^{4} \) | 2.71.c_abi | |
| 73 | $C_2$$\times$$C_2$ | \( ( 1 - 10 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) | 2.73.ae_di | |
| 79 | $D_{4}$ | \( 1 + 8 T + 94 T^{2} + 8 p T^{3} + p^{2} T^{4} \) | 2.79.i_dq | |
| 83 | $C_2$$\times$$C_2$ | \( ( 1 - 8 T + p T^{2} )( 1 + 12 T + p T^{2} ) \) | 2.83.e_cs | |
| 89 | $D_{4}$ | \( 1 + 15 T + 200 T^{2} + 15 p T^{3} + p^{2} T^{4} \) | 2.89.p_hs | |
| 97 | $D_{4}$ | \( 1 + 3 T + 152 T^{2} + 3 p T^{3} + p^{2} T^{4} \) | 2.97.d_fw | |
| show more | ||||
| show less | ||||
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−19.6922559575, −19.0175683850, −18.7565465185, −18.0648598165, −17.5175726083, −17.0735179990, −16.5780177438, −15.7480062710, −15.2828040461, −14.7074078638, −14.1415223259, −12.9394593637, −12.4557112149, −11.8065098107, −11.1905723075, −10.6225070359, −9.90186433954, −8.93155973268, −8.36985154624, −7.40295547450, −6.85454568380, −5.50671378791, −4.84837111573, −2.90749342929, 2.90749342929, 4.84837111573, 5.50671378791, 6.85454568380, 7.40295547450, 8.36985154624, 8.93155973268, 9.90186433954, 10.6225070359, 11.1905723075, 11.8065098107, 12.4557112149, 12.9394593637, 14.1415223259, 14.7074078638, 15.2828040461, 15.7480062710, 16.5780177438, 17.0735179990, 17.5175726083, 18.0648598165, 18.7565465185, 19.0175683850, 19.6922559575